Numerical Investigation of the Impact of a Hollow Ceramic Droplet on Metallic Substrate

Document Type : Regular Article

Authors

1 Blida 1 University, Institute of Aeronautics and Space Studies, Laboratory of Aeronautical Sciences, BP 270, Souma Road 09100, Algeria

2 LERMAB, IUT of Longwy, Lorraine University, France

10.47176/jafm.18.9.3387

Abstract

The objective of this study is to numerically investigate the spreading and solidification of a hollow ceramic droplet impacting a metallic substrate, with a particular focus on the melting of the substrate. The numerical model employs the PISO (Pressure-Implicit with Splitting of Operators) algorithm to solve the equations governing transient fluid dynamics, utilizing the pressure-based finite volume method in a 2D axisymmetric domain. The volume of fluid (VOF) method is employed to ensure the tracking of the droplet/air interface during spreading and solidification. The enthalpy porosity method is utilized for the monitoring of the liquid/solid interface throughout the processes of droplet solidification and substrate melting. The interaction between the spreading droplet and the substrate is represented by a thermal contact resistance. To validate the hollow droplet impact model, a comparison with published experimental results was performed. Simulations were conducted under plasma spray conditions for varying initial droplet temperatures and contact thermal resistances to assess their influences on droplet spreading and solidification, as well as substrate melting. It was observed that the initial droplet temperature significantly affects the splat morphology and substrate melting. However, thermal contact resistance exerts a greater influence on substrate melting than on the final splat shape. Thus, it was found that the droplets, whose initial temperature is high, impacting the substrates with low thermal contact resistance, improve the adhesion of the coatings.

Keywords

Main Subjects


Alavi, S., Passandideh-Fard, M., & Mostaghimi, J. (2012). Simulation of semi-molten particle impacts including heat transfer and phase change. Journal of Thermal Spray Technology, 21, 1278–1293. https://doi.org/10.1007/s11666-012-9804-8
An, T., Chen, H., Sang, X., Wang, Y., & Fang, H. (2024). Solidification process of hollow metal droplets impacting a substrate. International Communications in Heat and Mass Transfer, 159 C, 108252. https://doi.org/10.1016/j.icheatmasstransfer.2024.108252
ANSYS FLUENT. 16.0, Theory guide, ANSYS, Inc. (2016).
Blanken, N., Saleem, M. S., Thoraval, M. J., & Antonini, C. (2021). Impact of compound drops: a perspective. Current Opinion in Colloid & Interface Science, 51, 101389. https://doi.org/10.1016/j.cocis.2020.09.002
Bobzin, K., Heinemann, H., Jasutyn, K., Jeske, S.R., Bender, J., Warkentin, S., Mokrov, O., Sharma, R., & Reisgen, U. (2023). Modeling the droplet impact on the substrate with surface preparation in thermal spraying with SPH. Journal of Thermal Spray Technology, 32, 599–608. https://doi.org/10.1007/s11666-023-01534-0
Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
Chen, D., Feng, A., Wu, F., Wang, T., & Lin, Z. (2024). Experimental study of the collision behavior between moving and sessile droplets on curved surfaces. Chemical Engineering Science, 299, 120530. https://doi.org/10.1016/j.ces.2024.120530
Chen, D., Zhang, C., Feng, A., Wang, T., & Lin, Z. (2025). Experimental study on the dynamics of droplet collisions at different viscosities. Chemical Engineering Science, 307, 121367. https://doi.org/10.1016/j.ces.2025.121367
Driouche, M., Rezoug, T, & El-Ganaoui, M. (2020). Effect of droplet initial temperature on substrate melting and its re-solidification in plasma spray process. In Chaari, F., Barkallah, M., Bouguecha,  A., Zouari, B., Khabou, M. T., Kchaou, M., & Haddar, M. (Eds.), Advances in Materials, Mechanics and Manufacturing., Cham; 2020, 123–132. https://doi.org/10.1007/978-3-030-24247-3_14
Driouche, M., Rezoug, T., & El Ganaoui, M. (2019). Numerical study of the melting and resolidification of the substrate during the impact of a ceramic droplet in a plasma spraying process. The European Physical Journal Applied Physics, 88, 20901. https://doi.org/10.1051/epjap/2019190279
Emdadi, M., & Pournaderi, P. (2019). Study of droplet impact on a wall using a sharp interface method and different contact line models. Journal of Applied Fluid Mechanics, 12 (4), 1001-1012. https://doi.org/10.29252/jafm.12.04.29029
Emdadi, M., & Pournaderi, P. (2020). Numerical simulation of conducting droplet impact on a surface under an electric field. Acta Mechanica, 231, 1083–1103. https://doi.org/10.1007/s00707-019-02574-w
Goutier, S., Vardelle, M., & Fauchais, P. (2012). Understanding of spray coating adhesion through the formation of a single lamella. Journal of Thermal Spray Technology, 21, 522–530. https://doi.org/10.1007/s11666-012-9763-0
Gulyaev, I. P., & Solonenko, O. P. (2013). Hollow droplets impacting onto a solid surface. Experiments in Fluids, 54, 1432. https://doi.org/10.1007/s00348-012-1432-z
Gulyaev, I. P., Solonenko, O. P., Gulyaev, P. Y., & Smirnov, A. V. (2009). Hydrodynamic features of the impact of a hollow spherical drop on a flat surface. Technical Physics Letters, 35, 885–888. https://doi.org/10.1134/S1063785009100034
Kamnis, S., Gu, S., & Vardavoulias, M. (2011). Numerical study to examine the effect of porosity on in-flight particle dynamics. Journal of Thermal Spray Technology, 20, 630–637. https://doi.org/10.1007/s11666-010-9606-9
Keshri, A. K., & Agarwal, A. (2011). Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: A comparison between experiments and simulation. Surface and Coatings Technology, 206, 338-347. https://doi.org/10.1016/j.surfcoat.2011.07.025
Kumar, A., Gu, S., & Kamnis, S. (2012). Simulation of impact of a hollow droplet on a flat surface. Applied Physics A, 109, 101-109. https://doi.org/10.1007/s00339-012-7043-y
Kumar, A., Gu, S., Tabbara, H., & Kamnis, S. (2013). Study of impingement of hollow ZrO2 droplets onto a substrate. Surface and Coatings Technology, 220, 164-169. https://doi.org/10.1016/j.surfcoat.2012.08.061
Labergue, A., Gradeck, M., & Lemoine, F. (2015). Comparative study of the cooling of a hot temperature surface using sprays and liquid jets. International Journal of Heat and Mass Transfer, 81, 889-900. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.018
Latka, L., Pawłowski, L., Winnicki, M., Sokołowski, P., Małachowska, M., & Kozerski, S. (2020). Review of functionally graded thermal sprayed coatings. Applied Sciences, 10(15), 5153. https://doi.org/10.3390/app10155153
Li, C. J., Li, C. X., Yang, G. J., & Wang, Y. Y. (2006). Examination of substrate surface melting-induced splashing during splat formation in plasma spraying. Journal of Thermal Spray Technology, 15, 717-724. https://doi.org/10.1361/105996306X146947
Li, L., Wang, X. Y., Wei, G., Vaiday, A., Zhang, H., & Sampath, S. (2004). Substrate melting during thermal spray splat quenching. Thin Solid Films, 468, 113-119. https://doi.org/10.1016/j.tsf.2004.05.073
Niu, J., Sang, W., Li, D., Guo, Q., Qiu, A., & Shi, M. (2023). Fast prediction of multiple parameters related to iced airfoil based on POD and kriging methods. Journal of Applied Fluid Mechanics, 16(2), 325-336. https://doi.org/10.47176/jafm.16.02.1379
Pasandideh‐Fard, M., Qiao, Y. M., Chandra, S., & Mostaghimi, J. (1996). Capillary effects during droplet impact on a solid surface. Physics of Fluids, 8, 650–659. https://doi.org/10.1063/1.868850
Patel, V., Yadav, A., & Winczek, J. (2022). Computational study of the effect of spray parameters on adhesion of splat on the stainless street substrate during the impact of molten zirconia droplet. Heat and Mass Transfer, 58, 1365-1380. https://doi.org/10.1007/s00231-022-03184-4
Safaei, H., & Emami M. D. (2017). Numerical and analytical simulation of the production process of ZrO2 hollow particles. The European Physical Journal Plus, 132, 508. https://doi.org/10.1140/epjp/i2017-11768-1
Safaei, H., Emami, M. D., Jazi, H. S., & Mostaghimi, J. (2017). application of compressible volume of fluid model in simulating the impact and solidification of hollow spherical ZrO2 droplet on a surface. Journal of Thermal Spray Technology, 26, 1959-1981. https://doi.org/10.1007/s11666-017-0632-8
Shen, M., Li, B. Q., & Bai, Y. (2020). Numerical modeling of YSZ droplet impact/spreading with solidification microstructure formation in plasma spraying. International Journal of Heat and Mass Transfer, 150, 119267. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119267
Shigeru, K., & Atsushi, H. (1974). A study of the bonding mechanism of sprayed coatings. Journal of Vacuum Science & Technology, 11(4), 747-753. https://doi.org/10.1116/1.1312746
Solonenko, O. P., Gulyaev, I. P., & Smirnov, A. V. (2008a). Plasma processing and deposition of powdered metal oxides consisting of hollow spherical particles. Technical Physics Letters, 34, 1050-1052. https://doi.org/10.1134/S1063785008120183
Solonenko, O. P., Smirnov, A. V., & Gulyaev, I. P. (2008b). Spreading and solidification of hollow molten droplet under its impact onto substrate: Computer simulation and experiment. AIP Conference Proceedings, 982, 561-568. https://doi.org/10.1063/1.2897859
Tejero-Martin, D., Rezvani Rad, M., McDonald, A., & Hussain, T. (2019). Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings. Journal of Thermal Spray Technology, 28, 598–644. https://doi.org/10.1007/s11666-019-00857-1
Voller, V. R., & Prakash, C. (1987). A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 30(8), 1709-1719. https://doi.org/10.1016/0017-9310(87)90317-6
Xiaogang, L., Yanhua, W., Zhongyi W, Xinquan, Z., Jing, Z., & Haiou, S. (2023). Modeling the impingement deformation and solidification of a hollow zirconia droplet onto a dry substrate and solidified layer. AIP Advances, 13(3), 035213. https://doi.org/10.1063/5.0133936
Xu, M., Zhang, J., & Chen, R. Y. (2022). Cooling effect of droplet impacting on heated solid surface. International Journal of Heat and Mass Transfer, 183(A), 122070. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122070
Zhong, Y., Dong, X., Yin, Z., & Fang, H. (2020). Theoretical design of inkjet process to improve delivery efficiency. Journal of Applied Fluid Mechanics, 13(1), 275-286. https://doi.org/10.29252/jafm.13.01.30395