Alavi, S., Passandideh-Fard, M., & Mostaghimi, J. (2012). Simulation of semi-molten particle impacts including heat transfer and phase change.
Journal of Thermal Spray Technology, 21, 1278–1293.
https://doi.org/10.1007/s11666-012-9804-8
An, T., Chen, H., Sang, X., Wang, Y., & Fang, H. (2024). Solidification process of hollow metal droplets impacting a substrate.
International Communications in Heat and Mass Transfer, 159 C, 108252.
https://doi.org/10.1016/j.icheatmasstransfer.2024.108252
ANSYS FLUENT. 16.0, Theory guide, ANSYS, Inc. (2016).
Bobzin, K., Heinemann, H., Jasutyn, K., Jeske, S.R., Bender, J., Warkentin, S., Mokrov, O., Sharma, R., & Reisgen, U. (2023). Modeling the droplet impact on the substrate with surface preparation in thermal spraying with SPH.
Journal of Thermal Spray Technology, 32, 599–608.
https://doi.org/10.1007/s11666-023-01534-0
Chen, D., Feng, A., Wu, F., Wang, T., & Lin, Z. (2024). Experimental study of the collision behavior between moving and sessile droplets on curved surfaces.
Chemical Engineering Science, 299, 120530.
https://doi.org/10.1016/j.ces.2024.120530
Chen, D., Zhang, C., Feng, A., Wang, T., & Lin, Z. (2025). Experimental study on the dynamics of droplet collisions at different viscosities.
Chemical Engineering Science, 307, 121367.
https://doi.org/10.1016/j.ces.2025.121367
Driouche, M., Rezoug, T, & El-Ganaoui, M. (2020). Effect of droplet initial temperature on substrate melting and its re-solidification in plasma spray process. In Chaari, F., Barkallah, M., Bouguecha, A., Zouari, B., Khabou, M. T., Kchaou, M., & Haddar, M. (Eds.),
Advances in Materials, Mechanics and Manufacturing., Cham; 2020, 123–132.
https://doi.org/10.1007/978-3-030-24247-3_14
Driouche, M., Rezoug, T., & El Ganaoui, M. (2019). Numerical study of the melting and resolidification of the substrate during the impact of a ceramic droplet in a plasma spraying process.
The European Physical Journal Applied Physics, 88, 20901.
https://doi.org/10.1051/epjap/2019190279
Emdadi, M., & Pournaderi, P. (2019). Study of droplet impact on a wall using a sharp interface method and different contact line models.
Journal of Applied Fluid Mechanics, 12 (4), 1001-1012.
https://doi.org/10.29252/jafm.12.04.29029
Goutier, S., Vardelle, M., & Fauchais, P. (2012). Understanding of spray coating adhesion through the formation of a single lamella.
Journal of Thermal Spray Technology, 21, 522–530.
https://doi.org/10.1007/s11666-012-9763-0
Gulyaev, I. P., Solonenko, O. P., Gulyaev, P. Y., & Smirnov, A. V. (2009). Hydrodynamic features of the impact of a hollow spherical drop on a flat surface.
Technical Physics Letters, 35, 885–888.
https://doi.org/10.1134/S1063785009100034
Kamnis, S., Gu, S., & Vardavoulias, M. (2011). Numerical study to examine the effect of porosity on in-flight particle dynamics.
Journal of Thermal Spray Technology, 20, 630–637.
https://doi.org/10.1007/s11666-010-9606-9
Keshri, A. K., & Agarwal, A. (2011). Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: A comparison between experiments and simulation.
Surface and Coatings Technology, 206, 338-347.
https://doi.org/10.1016/j.surfcoat.2011.07.025
Latka, L., Pawłowski, L., Winnicki, M., Sokołowski, P., Małachowska, M., & Kozerski, S. (2020). Review of functionally graded thermal sprayed coatings.
Applied Sciences, 10(15), 5153.
https://doi.org/10.3390/app10155153
Li, C. J., Li, C. X., Yang, G. J., & Wang, Y. Y. (2006). Examination of substrate surface melting-induced splashing during splat formation in plasma spraying.
Journal of Thermal Spray Technology, 15, 717-724.
https://doi.org/10.1361/105996306X146947
Li, L., Wang, X. Y., Wei, G., Vaiday, A., Zhang, H., & Sampath, S. (2004). Substrate melting during thermal spray splat quenching.
Thin Solid Films, 468, 113-119.
https://doi.org/10.1016/j.tsf.2004.05.073
Niu, J., Sang, W., Li, D., Guo, Q., Qiu, A., & Shi, M. (2023). Fast prediction of multiple parameters related to iced airfoil based on POD and kriging methods.
Journal of Applied Fluid Mechanics, 16(2), 325-336.
https://doi.org/10.47176/jafm.16.02.1379
Pasandideh‐Fard, M., Qiao, Y. M., Chandra, S., & Mostaghimi, J. (1996). Capillary effects during droplet impact on a solid surface.
Physics of Fluids, 8, 650–659.
https://doi.org/10.1063/1.868850
Patel, V., Yadav, A., & Winczek, J. (2022). Computational study of the effect of spray parameters on adhesion of splat on the stainless street substrate during the impact of molten zirconia droplet.
Heat and Mass Transfer, 58, 1365-1380.
https://doi.org/10.1007/s00231-022-03184-4
Safaei, H., & Emami M. D. (2017). Numerical and analytical simulation of the production process of ZrO2 hollow particles.
The European Physical Journal Plus, 132, 508.
https://doi.org/10.1140/epjp/i2017-11768-1
Safaei, H., Emami, M. D., Jazi, H. S., & Mostaghimi, J. (2017). application of compressible volume of fluid model in simulating the impact and solidification of hollow spherical ZrO2 droplet on a surface.
Journal of Thermal Spray Technology, 26, 1959-1981.
https://doi.org/10.1007/s11666-017-0632-8
Shigeru, K., & Atsushi, H. (1974). A study of the bonding mechanism of sprayed coatings.
Journal of Vacuum Science & Technology, 11(4), 747-753.
https://doi.org/10.1116/1.1312746
Solonenko, O. P., Gulyaev, I. P., & Smirnov, A. V. (2008a). Plasma processing and deposition of powdered metal oxides consisting of hollow spherical particles.
Technical Physics Letters, 34, 1050-1052.
https://doi.org/10.1134/S1063785008120183
Solonenko, O. P., Smirnov, A. V., & Gulyaev, I. P. (2008b).
Spreading and solidification of hollow molten droplet under its impact onto substrate: Computer simulation and experiment. AIP Conference Proceedings, 982, 561-568.
https://doi.org/10.1063/1.2897859
Tejero-Martin, D., Rezvani Rad, M., McDonald, A., & Hussain, T. (2019). Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings.
Journal of Thermal Spray Technology, 28, 598–644.
https://doi.org/10.1007/s11666-019-00857-1
Voller, V. R., & Prakash, C. (1987). A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems.
International Journal of Heat and Mass Transfer, 30(8), 1709-1719.
https://doi.org/10.1016/0017-9310(87)90317-6
Xiaogang, L., Yanhua, W., Zhongyi W, Xinquan, Z., Jing, Z., & Haiou, S. (2023). Modeling the impingement deformation and solidification of a hollow zirconia droplet onto a dry substrate and solidified layer.
AIP Advances, 13(3), 035213.
https://doi.org/10.1063/5.0133936
Zhong, Y., Dong, X., Yin, Z., & Fang, H. (2020). Theoretical design of inkjet process to improve delivery efficiency.
Journal of Applied Fluid Mechanics, 13(1), 275-286.
https://doi.org/10.29252/jafm.13.01.30395