Al-Kayiem, H. H., Mohmmed, A. O., & Al-Hashimy, Z. I. (2017). Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe.
International Journal of Heat and Mass Transfer, 105, 252-260.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.105.
Bassani, C. L., Barbuto, F., & Sum A. K. (2017). A three-phase solid-liquid-gas slug flow mechanistic model coupling hydrate dispersion formation with heat and mass transfer.
Chemical Engineering Science, 178, 222-237.
https://doi.org/10.1016/j.ces.2017.12.034
Dehkordi, P. B., Colombo, L., & Mohammadian, E. (2019). A mechanistic model to predict pressure drop and holdup pertinent to horizontal gas-liquid-liquid intermittent flow.
Chemical Engineering Research & Design, 149, 182-194.
https://doi.org/10.1016/j.cherd.2019.07.009.
Fadlalla, D., Rosettani, J., & Holagh, S. G. (2023). Airlift pumps characteristics for shear-thinning non-Newtonian fluids: An experimental investigation on liquid viscosity impact.
Experimental Thermal and Fluid Science, 110994.
https://doi.org/10. 1016/j.expthermflusci.2023.110994
Fukano, T., Matsumura, K., Kawakami, Y., & Sekoguchi, K. (1980). Study on a transient slug flow lI.,
Trans JSME, 46. (412), 2412-2419.
https://doi.org/10..1299/kikaib.46.2412.
Guo, R. W., Fu, T. T., & Zhu, C. Y. (2020). Pressure drop model of gas-liquid flow with mass transfer in tree-typed microchannels.
Chemical Engineering Journal,
397, 125340.
https://doi.org/10.1016/j.cej.2020.125340
Hanafizadeh, P., Saidi, M. H., & Karimi, A. (2010). Effect of bubble size and angle of tapering upriser pipe on the performance of airlift pumps.
Particulate Science and Technology, 28, 332-347.
https://doi.org/10.1080/02726351.2010.496300.
Höhn, R. L, Arabi, A., & Stiriba, Y. (2025). Effect of solid particles on the hydrodynamics of vertical upward gas-liquid two-phase flow: Pressure drop analysis.
Chemical Engineering Research & Design, 214, 234-250.
https://doi.org/10.1016/j.cherd.2024.12.022.
Kassab, S. Z., Kandil, H. A., Warda, H. A., & Ahmed, W. H. (2007). Experimental and analytical investigations of airlift pumps operating in three-phase flow.
Chemical Engineering Journal, 131, 273-281.
https://doi.org/10.1016/j.cej.2006.12.009.
Mclaren, C. P., Metzger, J., & Boyce, C. M. (2021). Reduction in minimum fluidization velocity and minimum bubbling velocity in gas-solid fluidized beds due to vibration.
Powder Technology, 382. (19), 566-572.
https://doi.org/10.1016/j.powtec.2021.01.023.
Mohmmed, A. O., Al-Kayiem, H. H., & Osman, A. B. (2021). Investigations on the slug two-phase flow in horizontal pipes: Past., presents., and future directives.
Chemical Engineering Science, 238, 116611.
https://doi.org/10.016/j.ces.2021.116611
Pao, W., Sam B., & Nasif, M. S. (2018). Numerical validation of gas-liquid slug flow inside horizontal pipe.
Journal of Fundamental and Applied Sciences (5S), 662.
https://doi.org/10.4314/jfas.v9i5s.46
Sakaguchi, T., Minagawa, H., & Saibe, T. (1988). Estimation of volumetric fractions of each phase in gas-liquid-solid three-phase slug flow in vertical pipes. Japan-US Seminar on Two-Phase Flow Dynamics., Ohtsu., Japan., B4-1-12.
Sakaguchi, T., Yang, J., & Tsugami, H. (1999). Gas-liquid-solid three-phase flow in vertical pipe, 1st Report, Observation of gas-liquid and liquid-solid two-phase flow as basic multiphase flow for gas-liquid-solid three-phase flow. Japanese journal of multiphase flow, 13, 246-254.
Sato, Y., Yoshinaga, T., & Sadatomi M. (1991). Data and empirical correlation for the mean velocity of coarse particles in a vertical three-phase air-water-solid particle flow. Proc Int Conf Multiphase Flow. 1, 363-366.
Singh, H., Kumar, S., & Mohapatra, S. K. (2020). Modeling of solid-liquid flow inside conical diverging sections using computational fluid dynamics approach.
International Journal of Mechanical Sciences, 186, 105909.
https://doi.org/10.1016/j.ijmecsci.2020.105909.
Takano, S., Masanobu, S., & Kanada, S. (2023). Correlation for calculating frictional pressure drops in vertical three-phase flows for subsea-resource production.
Ocean Engineering, 114121.
https://doi.org/10..1016/j.oceaneng.2023.114121
Teng, W. A., Miao, G., & Tao, Z. A. (2021). Experimental investigation on characteristic parameters of air-water slug flow in a vertical tube.
Chemical Engineering Science, 246, 116895.
https://doi.org/10.1016/j.ces.2021.116895.
Toghraie, D., Afrand, M., & Zadeh, A. D. (2018). Numerical investigation on the flow and heat transfer of a multi-lobe particle and equivalent spherical particles in a packed bed with considering the wall effects.
International Journal of Mechanical Sciences, 138-139, 350-367.
https://doi.org/10.1016/j.ijmecsci.2018.02.019.
Tomiyama, A., Minagawa, H., & Furutani, N. (2008). Application of a two phase flow model based on local relative velocity to gas-liquid-solid three-phase flows.
International Journal of Multiphase Flow, 22 (97), 135-136.
https://doi.org/10.1299/jsmeb.38.555.
Wang, Z. N., Deng, Y. J., Pan, Y., Jin, Y. P., & Huang, F. (2020). Experimentally investigating the flow characteristics of airlift pumps operating in gas-liquid-solid flow.
Experimental Thermal and Fluid Science, 112, 109988.
https://doi.org/10.1016/j.expthermflusci.2019.109988.
Zhu, J. Y., Du, Y. L., & Fu, M. D. (2024). Frictional pressure drop of the vertically upward gas-liquid two-phase flow in an airlift pump system.
Physics Of Fluids, 36(9),093355.
https://doi.org/10.1063/5.0229776.
Zitouni, A. H., Arabi, A., & Salhi, Y. (2021). Slug length and frequency upstream a sudden expansion in gas-liquid intermittent flow.
Experimental and Computational Multiphase Flow, 3, 124-130.
https://doi.org/10.1007/s42757-020-0068-0.