Aguirre, A., Castillo, E., Cruchaga, M., Codina, R., & Baiges, J. (2018). Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type.
Journal of Non-Newtonian Fluid Mechanics 257, 22-43.
https://doi.org/10.1016/j.jnnfm.2018.03.014
Anantha Kumar, K., Sugunamma, V., & Sandeep, N. (2018). Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface.
Journal of Non-Equilibrium Thermodynamics,
43(4), 327–345.
https://doi.org/10.1515/jnet-2018-0022
Anantha Kumar, K., Sugunamma, V., & Sandeep, N. (2019a). Numerical exploration of MHD radiative micropolar liquid flow driven by stretching sheet with primary slip: A comparative study.
Journal of Non-Equilibrium Thermodynamics,
44(2), 101–122.
https://doi.org/10.1515/jnet-2018-0069
Anantha Kumar, K., Sugunamma, V., & Sandeep, N. (2020). Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet.
Journal of Thermal Analysis and Calorimetry,
140(5), 2377–2385.
https://doi.org/10.1007/s10973-019-08977-0
Anantha Kumar, K., Sugunamma, V., Sandeep, N., & Reddy, J. V. R. (2019b). MHD stagnation point flow of Williamson and Casson fluids past an extended cylinder: A new heat flux model.
SN Applied Sciences,
1(7), 705.
https://doi.org/10.1007/s42452-019-0743-6
Anderson, P. D., Galaktionov, O. S., Peters, G.W.M., van de Vosse, F. N., & Meijer, H. E. H. (2000). Mixing of non-Newtonian fluids in time-periodic cavity flows.
Journal of Non-Newtonian Fluid Mechanics 93, 265-286.
https://doi.org/10.1016/S0377-0257(00)00120-8
Baloch, A., Grant, P. W., & Webster, M. F. (2002). Homogenous and heterogeneous distributed cluster processing for two- and three-dimensional viscoelastic flows.
International Journal for Numerical Methods in Fluids, 40, 1347-1363.
https://doi.org/10.1002/fld.368
Chen, Z., & Shu, C. (2019). Simplified lattice Boltzmann method for non-Newtonian power-law fluid flows.
International Journal for Numerical Methods in Fluids, 1-17.
https://doi.org/10.1002/fld.4771
Citro, V., Giannetti, F., & Pralits, J. O. (2015). Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities.
Fluid Dynamics Research, 47, 015503.
https://doi.org/10.1088/0169-5983/47/1/015503
Fernandes, C., Vukcevic, V., Uroic, T., Simoes, R., Carneiro, O. S., Jasak, H., & Nobrega, J. M., (2019). A coupled finite volume flow solver for the solution of incompressible viscoelastic flows.
Journal of Non-Newtonian Fluid Mechanics, 265, 99-115.
https://doi.org/10.1016/j.jnnfm.2019.01.006
Grillet, A. M., Yang, B., Khomami, B., & Shaqfeh, E. S. G. (1999). Modeling of viscoelastic lid driven cavity flow using finite element simulations. Journal of Non-Newtonian Fluid Mechanics, 88, 99-131.
Hamedi, H., & Rahimian, M. H. (2011). Numerical simulation of non-Newtonian pseudo-plastic fluid in a micro-channel using the Lattice Boltzman Method.
World Journal of Mechanics, 231-242.
https://doi.org/10.4236/wjm.2011.15029
Haque, S., Lashgari, I., Giannetti, F., & Brandt, L., (2012). Stability of fluids with shear-dependent viscosity in the lid-driven cavity.
Journal of Non-Newtonian Fluid Mechanics, 173-174, 49-61.
https://doi.org/10.1016/j.jnnfm.2012.02.004
Kim, N., & Reddy, J. N., (2012). 3-D least squares finite element analysis of flows of generalized Newtonian fluids.
Journal of Non-Newtonian Fluid Mechanics, 266, 143-159.
https://doi.org/10.1016/j.jnnfm.2019.03.004
Mendu, S. S., & Das, P. K. (2012). Flow of power-law fluids in a cavity driven by the motion of two facing lids – A simulation by lattice Boltzmann method.
Journal of Non-Newtonian Fluid Mechanics, 175-176, 10-24.
https://doi.org/10.1016/j.jnnfm.2012.03.007
Mitsoulis, E., Marangoudakis, S., & Spyratos, M., Zisis, T., & Malamataris, N. A. (2006). Pressure drivenflows of Bingham plastics over a square cavity.
Journal of Fluids Engineering, 128, 993-1003.
https://doi.org/10.1115/1.2236130
Pakdel, P., & McKinley, G. M. (1998). Cavity flows of elastic liquids: purely elastic instabilities.
Physics of Fluids, 10 (5), 1058-1070.
https://doi.org/10.1063/1.869631
Santos, D. D., Frey, S., Naccache, M. F., & Mendes, P. R. (2011). Numerical approximations for flow of viscoplastic fluids in a lid-driven cavity.
Journal of Non-Newtonian Fluid Mechanics, 166, 667-679.
https://doi.org/10.1016/j.jnnfm.2011.03.004
Shamekhi, A., & Sadeghy, K. (2009). Cavity flow simulation of Carreau-Yasuda non-Newtonian fluids using PIM meshfree method.
Applied Mathematical Modelling 33, 4131-4145.
https://doi.org/10.1016/j.apm.2009.02.009
Sousa, R. G., Poole, R. J., Afonso, A. M., Pinho, F. T., Oliveira, P. J., Morozov, A., &. Alves, M. A. (2016). Lid-driven cavity flow of viscoelastic liquids.
Journal of Non-Newtonian Fluid Mechanics, 234, 129-138.
https://doi.org/10.1016/j.jnnfm.2016.03.001
Sriram, S., Deshpande, A. P., & Pushpavanam, S. (2008). Characterization of viscoelastic fluid flow in a periodically driven cavity: flow structure, frequency response and phase lag.
Polymer Engineering Science, 1693-1705.
https://doi.org/10.1002/pen.21175
Sun, K.H., Pyle, D. L., Baines, M. J., Hall-Tayler, N., & Fitt, A. D. (2006). Velocity profiles and frictional pressure drop for shear thinning materials in lid-driven cavities with fully developed axial flow.
Chemical Engineering Science, 61, 4697-4706.
https://doi.org/10.1016/j.ces.2006.03.005
Syrakos, A., Georgiou, G. C. A., & Alexandrou, N. (2013). Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method.
Journal of Non-Newtonian Fluid Mechanics, 195, 19-31.
https://doi.org/10.1016/j.jnnfm.2012.12.008
Thohura, S., Molla, M., & Sarker, M. M. A. (2019). Bingham fluid flow simulation in a lid-driven skewed cavity using the finite-volume method.
International Journal of Computer Mathematics https://doi.org/10.1080/00207160.2019.1613527.
Varchanis, S., Syrakos, A., Dimakopoulos, Y., & Tsamopoulos, J. (2019). A new finite element formulation for viscoelastic flows: circumventing simultaneously the LBB condition and the high-Weissenberg number problem.
Journal of Non-Newtonian Fluid Mechanics, 267, 78-97.
https://doi.org/10.1016/j.jnnfm.2019.04.003
Wang, Y., Shu, C., Yang, L. M., & Yuan, H. Z. A(2016). Decoupling multiple-relaxation-time lattice Boltzmann flux solver for non-Newtonian power-law fluids.
Journal of Non-Newtonian Fluid Mechanics, 235, 20-28.
https://doi.org/10.1016/j.jnnfm.2016.03.010
Xu, B., He, L., Wang, M., & Turng, L. S., (2009). Effect of longitudinal periodic length on chaotic mixing in a lid-driven cavity flow system.
Journal of Non-Newtonian Fluid Mechanics, 261, 81-98.
https://doi.org/10.1016/j.jnnfm.2018.08.009
Zhang, J. (2010). An augmented Lagrangian approach to Bingham fluid flows in a lid-driven square cavity with piecewise linear equal-order finite elements.
Computer Methods in Applied Mechanics and Engineering 199, 3051-3057.
https://doi.org/10.1016/j.cma.2010.06.020