Experimental and Numerical Study of Flow over Rectangular Cavity

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, Ankara Yildirim Beyazit University, Turkey

2 Department of Energy Systems Engineering, Ankara Yildirim Beyazit University, Turkey

3 Department of Mechanical Engineering, Cukurova University, Turkey

4 Department of Energy Systems Engineering, Osmaniye Korkut Ata University, Turkey

10.47176/jafm.18.9.3399

Abstract

This study investigates shear-thinning non-Newtonian fluid flow over a rectangular cavity using both experimental and numerical approaches. Small concentrations, varying between 0.25% and 1.0% of polyacrylamide (PAM) with high molecular weight, were used to form the non-Newtonian solution. In the experimental phase, Particle Image Velocimetry (PIV) was employed to obtain time-averaged velocity fields and recirculation characteristics. These experimental findings were compared with numerical simulations using Computational Fluid Dynamics (CFD) in which the fluid behavior was characterized using the Carreau rheological model. Excellent agreement was achieved between experimental and numerical results for velocity vectors, streamwise and transverse velocity contours, and vorticity distributions across Reynolds numbers ranging from 5 to 50. The structural flow changes within and in the vicinity of the rectangular cavity resulting from increasing Reynolds numbers are analyzed in detail, with particular emphasis on how the shear-thinning properties influence vortex formation, recirculation zones, and velocity gradients. 

Keywords

Main Subjects


Aguirre, A., Castillo, E., Cruchaga, M., Codina, R., & Baiges, J. (2018). Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type. Journal of Non-Newtonian Fluid Mechanics 257, 22-43. https://doi.org/10.1016/j.jnnfm.2018.03.014
Anantha Kumar, K., Sugunamma, V., & Sandeep, N. (2018). Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface. Journal of Non-Equilibrium Thermodynamics, 43(4), 327–345. https://doi.org/10.1515/jnet-2018-0022
Anantha Kumar, K., Sugunamma, V., & Sandeep, N. (2019a). Numerical exploration of MHD radiative micropolar liquid flow driven by stretching sheet with primary slip: A comparative study. Journal of Non-Equilibrium Thermodynamics, 44(2), 101–122. https://doi.org/10.1515/jnet-2018-0069
Anantha Kumar, K., Sugunamma, V., & Sandeep, N. (2020). Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet. Journal of Thermal Analysis and Calorimetry, 140(5), 2377–2385. https://doi.org/10.1007/s10973-019-08977-0
Anantha Kumar, K., Sugunamma, V., Sandeep, N., & Reddy, J. V. R. (2019b). MHD stagnation point flow of Williamson and Casson fluids past an extended cylinder: A new heat flux model. SN Applied Sciences, 1(7), 705. https://doi.org/10.1007/s42452-019-0743-6
Anderson, P. D., Galaktionov, O. S., Peters, G.W.M., van de Vosse, F. N., & Meijer, H. E. H. (2000).  Mixing of non-Newtonian fluids in time-periodic cavity flows. Journal of Non-Newtonian Fluid Mechanics 93, 265-286. https://doi.org/10.1016/S0377-0257(00)00120-8
Baloch, A., Grant, P. W., & Webster, M. F. (2002). Homogenous and heterogeneous distributed cluster processing for two- and three-dimensional viscoelastic flows. International Journal for Numerical Methods in Fluids, 40, 1347-1363. https://doi.org/10.1002/fld.368
Chen, Z., & Shu, C. (2019). Simplified lattice Boltzmann method for non-Newtonian power-law fluid flows. International Journal for Numerical Methods in Fluids, 1-17. https://doi.org/10.1002/fld.4771
Citro, V., Giannetti, F., & Pralits, J. O. (2015). Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities. Fluid Dynamics Research, 47, 015503. https://doi.org/10.1088/0169-5983/47/1/015503
Fernandes, C., Vukcevic, V., Uroic, T., Simoes, R., Carneiro, O. S., Jasak, H., & Nobrega, J. M., (2019). A coupled finite volume flow solver for the solution of incompressible viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 265, 99-115. https://doi.org/10.1016/j.jnnfm.2019.01.006
Grillet, A. M., Shaqfeh, E. S. G., & Khomami, B. (2000). Observations of elastic instabilities in lid-driven cavity flow. Journal of Non-Newtonian Fluid Mechanics, 94, 15-35. https://doi.org/10.1016/S0377-0257(00)00123-3
Grillet, A. M., Yang, B., Khomami, B., & Shaqfeh, E. S. G. (1999). Modeling of viscoelastic lid driven cavity flow using finite element simulations. Journal of Non-Newtonian Fluid Mechanics, 88, 99-131.
Hamedi, H., & Rahimian, M. H. (2011). Numerical simulation of non-Newtonian pseudo-plastic fluid in a micro-channel using the Lattice Boltzman Method. World Journal of Mechanics, 231-242. https://doi.org/10.4236/wjm.2011.15029
Haque, S., Lashgari, I., Giannetti, F., & Brandt, L., (2012). Stability of fluids with shear-dependent viscosity in the lid-driven cavity. Journal of Non-Newtonian Fluid Mechanics, 173-174, 49-61. https://doi.org/10.1016/j.jnnfm.2012.02.004
Kim, N., & Reddy, J. N., (2012). 3-D least squares finite element analysis of flows of generalized Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 266, 143-159. https://doi.org/10.1016/j.jnnfm.2019.03.004
Mendu, S. S., & Das, P. K. (2012). Flow of power-law fluids in a cavity driven by the motion of two facing lids – A simulation by lattice Boltzmann method. Journal of Non-Newtonian Fluid Mechanics, 175-176, 10-24. https://doi.org/10.1016/j.jnnfm.2012.03.007
Mitsoulis, E., & Zisis, T. (2001). Flow of Bingham plastics in a lid-driven square cavity. Journal of Non-Newtonian Fluid Mechanics, 101, 173-180. https://doi.org/10.1016/S0377-0257(01)00147-1
Mitsoulis, E., Marangoudakis, S., & Spyratos, M., Zisis, T., & Malamataris, N. A. (2006). Pressure drivenflows of Bingham plastics over a square cavity. Journal of Fluids Engineering, 128, 993-1003. https://doi.org/10.1115/1.2236130
Ozalp, C., Pinarbasi, A., & Sahin, B., (2010). Experimental measurement of flow past cavities of different shapes. Experimental Thermal and Fluid Science, 34, 505-515. https://doi.org/10.1016/j.expthermflusci.2009.11.003
Pakdel, P., & McKinley, G. M. (1997). Digital particle image velocimetry of viscoelastic fluids, AIChE Journal 43, (2), 289-302. https://doi.org/10.1002/aic.690430202
Pakdel, P., & McKinley, G. M. (1998). Cavity flows of elastic liquids: purely elastic instabilities. Physics of Fluids, 10 (5), 1058-1070. https://doi.org/10.1063/1.869631
Pinarbasi, A., Pinar, E., Akilli, H., & İnce, E. (2015). Shallow water experiments of flow past two identical square cylinders in tandem. European Journal of Mechanics B/Fluids, 49, 100-107. https://doi.org/10.1016/j.euromechflu.2014.08.009
Santos, D. D., Frey, S., Naccache, M. F., & Mendes, P. R. (2011). Numerical approximations for flow of viscoplastic fluids in a lid-driven cavity. Journal of Non-Newtonian Fluid Mechanics, 166, 667-679. https://doi.org/10.1016/j.jnnfm.2011.03.004
Shamekhi, A., & Sadeghy, K. (2009). Cavity flow simulation of Carreau-Yasuda non-Newtonian fluids using PIM meshfree method. Applied Mathematical Modelling 33, 4131-4145. https://doi.org/10.1016/j.apm.2009.02.009
Sousa, R. G., Poole, R. J., Afonso, A. M., Pinho, F. T., Oliveira, P. J., Morozov, A., &. Alves, M. A. (2016). Lid-driven cavity flow of viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 234, 129-138. https://doi.org/10.1016/j.jnnfm.2016.03.001
Sriram, S., Deshpande, A. P., & Pushpavanam, S. (2008). Characterization of viscoelastic fluid flow in a periodically driven cavity: flow structure, frequency response and phase lag. Polymer Engineering Science, 1693-1705. https://doi.org/10.1002/pen.21175
Sun, K.H., Pyle, D. L., Baines, M. J., Hall-Tayler, N., & Fitt, A. D. (2006). Velocity profiles and frictional pressure drop for shear thinning materials in lid-driven cavities with fully developed axial flow. Chemical Engineering Science, 61, 4697-4706. https://doi.org/10.1016/j.ces.2006.03.005
Syrakos, A., Georgiou, G. C. A., & Alexandrou, N. (2013). Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method. Journal of Non-Newtonian Fluid Mechanics, 195, 19-31. https://doi.org/10.1016/j.jnnfm.2012.12.008
Thohura, S., Molla, M., & Sarker, M. M. A. (2019). Bingham fluid flow simulation in a lid-driven skewed cavity using the finite-volume method. International Journal of Computer Mathematics https://doi.org/10.1080/00207160.2019.1613527.
Varchanis, S., Syrakos, A., Dimakopoulos, Y., & Tsamopoulos, J. (2019). A new finite element formulation for viscoelastic flows: circumventing simultaneously the LBB condition and the high-Weissenberg number problem. Journal of Non-Newtonian Fluid Mechanics, 267, 78-97. https://doi.org/10.1016/j.jnnfm.2019.04.003
Wang, Y., Shu, C., Yang, L. M., & Yuan, H. Z. A(2016). Decoupling multiple-relaxation-time lattice Boltzmann flux solver for non-Newtonian power-law fluids. Journal of Non-Newtonian Fluid Mechanics, 235, 20-28. https://doi.org/10.1016/j.jnnfm.2016.03.010
Xu, B., He, L., Wang, M., & Turng, L. S., (2009). Effect of longitudinal periodic length on chaotic mixing in a lid-driven cavity flow system. Journal of Non-Newtonian Fluid Mechanics, 261, 81-98. https://doi.org/10.1016/j.jnnfm.2018.08.009
Yesilata, B., Oztekin, A., & Neti, S. (1999). Instabilities in viscoelastic flow through an axisymmetric sudden contraction. Journal of Non-Newtonian Fluid Mechanics, 85, 35-62. https://doi.org/10.1016/S0377-0257(98)00183-9
Zhang, J. (2010). An augmented Lagrangian approach to Bingham fluid flows in a lid-driven square cavity with piecewise linear equal-order finite elements. Computer Methods in Applied Mechanics and Engineering 199, 3051-3057. https://doi.org/10.1016/j.cma.2010.06.020