Akteriana, S. (2011). Improving the energy efficiency of traditional multi-stage steam-jet-ejector vacuum systems for deodorizing edible oils.
Procedia Food Science,1,1785–1791.
https://doi.org/10.1016/j.profoo.2011.09.262
Besagni, G., Cristiani, N., Croci, L., Guédon, G. R., & Inzoli, F. (2021). Computational fluid-dynamics modelling of supersonic ejectors: Screening of modelling approaches, comprehensive validation and assessment of ejector component efficiencies.
Applied Thermal Engineering 186, 116431.
https://doi.org/10.1016/j.applthermaleng.2020.116431Get rights and content
Cantwell, B. J. (2018). AA210A Fundamentals of Compressible Flow. Stanford University, Department of Aeronautics and Astronautics.
Chai, Y., Lin, Y., Xiao, Q., Huang, C., Ke, H., & Li, B. (2024). Numerical simulation on two-phase ejector with non-condensable gas.
Energies, 17, 1341.
https://doi.org/10.3390/en17061341
Chen, W., Shi, C., Zhang, S., Chen, H., Chong, D., & Yan, J. (2017). Theoretical analysis of ejector refrigeration system performance under overall modes.
Applied Energy, 185, 2074–2084.
https://doi.org/10.1016/j.apenergy.2016.01.103
Croquer, S., Lamberts, O., Poncet, S., Moreau, S., & Bartosiewicz, Y. (2022). Large eddy simulation of a supersonic air ejector.
Applied Thermal Engineering, 209, 118177.
https://doi.org/10.1016/j.applthermaleng.2022.118177
Dadpour, D., Lakzian, E., Gholizadeh, M., Ding, H., & Han, X. (2022). Numerical modeling of droplets injection in the secondary flow of the wet steam ejector in the refrigeration cycle.
International Journal of Refrigeration, 136, 103–113.
https://doi.org/10.1016/j.ijrefrig.2022.01.026
El-Dessouky, H., Ettouney, H., Alatiqi, I., & Al-Nuwaibit, G. (2002). Evaluation of steam jet ejectors.
Chemical Engineering and Processing: Process Intensification, 41(6), 551–561.
https://doi.org/10.1016/S0255-2701(01)00176-3
Feng, H., Yao, A., Han, Q., Zhang, H., Jia, L., & Sun, W. (2024). Effect of droplets in the primary flow on ejector performance of MED-TVC systems.
Energy, 293, 130741.
https://doi.org/10.1016/j.energy.2024.130741
Ghorbanian, S., & Nejad, S. J. (2011). Ejector modeling and examining of possibility of replacing liquid vacuum pump in vacuum production systems.
International Journal of Chemical Engineering and Applications, 2(2), 91.
https://doi.org/10.7763/IJCEA.2011.V2.82
Gullo, P., Tsamos, K. M., Hafner, A., Banasiak, K., Yunting, T. G., & Tassou, S. A. (2018). Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study.
Energy, 164, 236–263.
https://doi.org/10.1016/j.energy.2018.08.205
Han, Y., Wang, X., Sun, H., Zhang, G., Guo, L., & Tu, J. (2019). CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance.
Energy, 167, 469–483.
https://doi.org/10.1016/j.energy.2018.10.195
Hemidi, A., Henry, F., Leclaire, S., Seynhaeve, J. M., & Bartosiewicz, Y. (2009). CFD analysis of a supersonic air ejector. Part II: Relation between global operation and local flow features.
Applied Thermal Engineering, 29(14–15), 2990–2998.
https://doi.org/10.1016/j.applthermaleng.2009.03.019
Hou, Y., Chen, F., Zhang, S., Chen, W., Zheng, J., Chong, D., & Yan, J. (2022). Numerical simulation study on the influence of primary nozzle deviation on the steam ejector performance.
International Journal of Thermal Sciences, 179, 107633.
https://doi.org/10.1016/j.ijthermalsci.2022.107633
Hwang, J. J., Cho, C. C., Wu, W., Chiu, C. H., Chiu, K. C., & Lin, C. H. (2015). Numerical and experimental investigation into passive hydrogen recovery scheme using vacuum ejector. Journal of Power Sources, 275, 539–546. https://doi.org/10.1016/j.jpowsour.2014.11.057
Kibar, A., Korkmaz, Y. S., & Yigit, K. S. (2025). Examination of flow in the monoblock directional valve: from pump to tank. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47, 125. https://doi.org/10.1007/s40430-025-05440-0
Koirala, R., Ve, Q. L., Zhu, B., Inthavong, K., & Date, A. (2021). A review on process and practices in operation and design modification of ejectors.
Fluids, 6, 409.
https://doi.org/10.3390/fluids6110409
Kuo, J. K., Wu, P. R., Yang, T. F., & Yan, W. M. (2023). Optimal technical analysis of vacuum ejector for passive hydrogen recovery. International Journal of Hydrogen Energy, 48(22), 8260–8272. https://doi.org/10.1016/j.ijhydene.2022.11.218
Li, Z., Xu, W., Liang, T., Ye, W., & Zhang, Z. (2024). Experimental and numerical studies on the performance of supersonic multi-nozzle ejector.
Appl. Therm. Eng. 242, 122409.
https://doi.org/10.1016/j.applthermaleng.2024.122409
Mukhtar, H. K., Fadlalla, A., Ibrahim, R., & Ghani, S. (2024). Numerical investigation of the flow characteristics inside a supersonic vapor ejector.
International Journal of Thermofluids, 24, 100912.
https://doi.org/10.1016/j.ijft.2024.100912
Niu, L., & Zhang, X. (2024). Comparison of the performance enhancement of vacuum ejector by means of structure optimization and bypass methods.
Energy, 297, 131263.
http://dx.doi.org/10.2139/ssrn.4471729
Palacz, M., Haida, M., Smolka, J., Plis, M., Nowak, A. J., & Banasiak, K. (2018). A gas ejector for CO2 supercritical cycles.
Energy, 163, 1207–1216.
https://doi.org/10.1016/j.energy.2018.09.030
Ramesh, A. S., & Sekhar, S. J. (2018). Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector.
Energy, 164, 1097–1113.
https://doi.org/10.1016/j.energy.2018.09.010
Sadeghiseraji, J., Garcia-Vilchez, M., Castilla, R., & Raush, G. (2024). Recent advances in numerical simulation of ejector pumps for vacuum generation—A Review.
Energies, 17(17), 4479.
https://doi.org/10.3390/en17174479
Saini, M., Nur, R., Yunus, S., & Ibrahim, I. (2018). The influence of throat length and vacuum pressure on air pollutant filtration using ejector.
AIP Conference Proceedings, 1977(1).
https://doi.org/10.1063/1.5042959
Samsam-Khayani, H., Yoon, S. Y., Kim, M., & Kim, K. C. (2023). Experimental and numerical study on low-temperature supersonic ejector. International Journal of Thermofluids, 20 (June), 100407. https://doi.org/10.1016/j.ijft.2023.100407
Siemens. (2023). Simcenter STAR-CCM+ User Guide. Siemens Digital Industries Software.
Sun, W., Liu, C., Zhang, H., Sun, W., Xue, H., & Jia, L. (2022). Numerical analysis of two-stage vacuum ejector performance considering the influence of phase transition and non-condensable gases.
Applied Thermal Engineering, 213, 118730.
https://doi.org/10.1016/j.applthermaleng.2022.118730
Talebiyan, M. A., Nili-Ahmadabadi, M., & Ha, M. Y. (2024). Adjoint optimization of a supersonic ejector for under-expanded, isentropic, and over-expanded primary flow modes.
Chemical Engineering Science 292, 119979.
https://doi.org/10.1016/j.ces.2024.119979
Tang, Y., Li, Y., Liu, Z., Wu, H., & Fu, W. (2017). A novel steam ejector with auxiliary entrainment for energy conservation and performance optimization.
Energy Conversion and Management, 148, 210–221.
https://doi.org/10.1016/j.enconman.2017.05.076
Tavakoli, M., Nili-Ahmadabadi, M., Joulaei, A., and Ha, M. Y. (2023). Enhancing subsonic ejector performance by incorporating a fluidic oscillator as the primary nozzle: a numerical investigation.
International Journal of Thermofluids, 20, 100429.
https://doi.org/10.1016/j.ijft.2023.100429
Thongtip, T., & Aphornratana, S. (2017). An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector refrigerator.
Applied Thermal Engineering, 110, 89–101.
https://doi.org/10.1016/j.applthermaleng.2016.08.100
Udroiu, C. M., Mota-Babiloni, A., Gim´enez-Prades, P., Barrag´ an-Cervera, A., & Navarro-Esbrí J. (2023). Two-stage cascade configurations based on ejectors for ultra-low temperature refrigeration with natural refrigerants. International Journal of Thermofluids, 17 100287. https://doi.org/10.1016/j.ijft.2023.100287
Wen, C., Gong, L., Ding, H., & Yang, Y. (2020). Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system.
Applied Energy, 279, 115831.
https://doi.org/10.1016/j.apenergy.2020.115831
Xue, H., Wang, L., Jia, L., Xie, C., & Lv, Q. (2020). Design and investigation of a two-stage vacuum ejector for MED-TVC system.
Applied Thermal Engineering, 167, 114713.
https://doi.org/10.1016/j.applthermaleng.2019.114713
Yazici, F., Karadag, M., Gokluberk, P., & Kibar, A. (2024). Examining the uniformity of flow distribution in manifolds. Journal of Applied Fluid Mechanics, 17(5). https://doi.org/10.47176/jafm.17.05.2302