Investigation of a Vacuum Ejector Used in a Dynamic Function Vehicle Tire Air Control Valve

Document Type : Regular Article

Authors

1 Altan Hydraulic Engineering Industry and Trade Corporation, Istanbul, 34956, Turkey

2 Department of Mechanical Engineering, Graduate School of Natural and Applied Sciences, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey

3 Department of Mechanical and Material Technologies, Kocaeli University, Uzunciftlik Nuh Cimento Campus, 41180, Kocaeli, Turkey

4 Department of Mechanical Engineering, Faculty of Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey

5 Department of Mechanical Engineering, Medeniyet University, North Campus, 34700, Istanbul, Turkey

10.47176/jafm.18.9.3300

Abstract

A critical component of a central tyre inflation system (CTIS) is the tyre valve. When positive pressure air is directed to the valve, it allows air to enter the tyre, increasing the tyre’s internal pressure. Conversely, when vacuum pressure is applied, the tyre pressure decreases. Consequently, the tyre valve must be capable of generating negative pressure when necessary to function effectively. While the CTIS includes a compressed air reservoir and a pressure pump for reservoir filling, it lacks a dedicated vacuum pump to create negative pressure. Instead, negative pressure is generated by an ejector that utilises the Venturi effect to accelerate the air through an orifice, creating low pressure using pressurised air from the reservoir. The primary advantage of this design is its ability to generate negative pressure without an additional component, such as a vacuum pump, relying solely on the existing high-pressure air. This study presents both experimental and numerical investigations of a vacuum ejector designed to generate negative pressure. The experimental results align closely with the numerical simulations. Furthermore, the study explores the impact of varying the throat diameter of the vacuum ejector to enhance fluid velocity, with the optimal performance observed at −98 kPa for a 1 mm throat diameter. For throat diameters of <1 mm, the flow becomes unstable, and at 0.2 mm, the flow is completely obstructed, rendering the system inoperative.

Keywords

Main Subjects


Akteriana, S. (2011). Improving the energy efficiency of traditional multi-stage steam-jet-ejector vacuum systems for deodorizing edible oils. Procedia Food Science,1,1785–1791. https://doi.org/10.1016/j.profoo.2011.09.262
Ariafar, K., Buttsworth, D., Al-Doori, G., & Malpress, R. (2015). Effect of mixing on the performance of wet steam ejectors. Energy, 93, 2030–2041. https://doi.org/10.1016/j.energy.2015.10.082
Besagni, G. (2019). Ejectors on the cutting edge: The past, the present and the perspective. Energy, 170, 998–1003. https://doi.org/10.1016/j.energy.2018.12.214
Besagni, G., Cristiani, N., Croci, L., Guédon, G. R., & Inzoli, F. (2021). Computational fluid-dynamics modelling of supersonic ejectors: Screening of modelling approaches, comprehensive validation and assessment of ejector component efficiencies. Applied Thermal Engineering 186, 116431. https://doi.org/10.1016/j.applthermaleng.2020.116431Get rights and content
Cantwell, B. J. (2018). AA210A Fundamentals of Compressible Flow. Stanford University, Department of Aeronautics and Astronautics.
Chai, Y., Lin, Y., Xiao, Q., Huang, C., Ke, H., & Li, B. (2024). Numerical simulation on two-phase ejector with non-condensable gas. Energies, 17, 1341. https://doi.org/10.3390/en17061341
Chen, W., Shi, C., Zhang, S., Chen, H., Chong, D., & Yan, J. (2017). Theoretical analysis of ejector refrigeration system performance under overall modes. Applied Energy, 185, 2074–2084. https://doi.org/10.1016/j.apenergy.2016.01.103
Croquer, S., Lamberts, O., Poncet, S., Moreau, S., & Bartosiewicz, Y. (2022). Large eddy simulation of a supersonic air ejector. Applied Thermal Engineering, 209, 118177. https://doi.org/10.1016/j.applthermaleng.2022.118177
Dadpour, D., Lakzian, E., Gholizadeh, M., Ding, H., & Han, X. (2022). Numerical modeling of droplets injection in the secondary flow of the wet steam ejector in the refrigeration cycle. International Journal of Refrigeration, 136, 103–113. https://doi.org/10.1016/j.ijrefrig.2022.01.026
El-Dessouky, H., Ettouney, H., Alatiqi, I., & Al-Nuwaibit, G. (2002). Evaluation of steam jet ejectors. Chemical Engineering and Processing: Process Intensification, 41(6), 551–561. https://doi.org/10.1016/S0255-2701(01)00176-3
Feng, H., Yao, A., Han, Q., Zhang, H., Jia, L., & Sun, W. (2024). Effect of droplets in the primary flow on ejector performance of MED-TVC systems. Energy, 293, 130741. https://doi.org/10.1016/j.energy.2024.130741
Ghorbanian, S., & Nejad, S. J. (2011). Ejector modeling and examining of possibility of replacing liquid vacuum pump in vacuum production systems. International Journal of Chemical Engineering and Applications, 2(2), 91. https://doi.org/10.7763/IJCEA.2011.V2.82
Gullo, P., Tsamos, K. M., Hafner, A., Banasiak, K., Yunting, T. G., & Tassou, S. A. (2018). Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study. Energy, 164, 236–263. https://doi.org/10.1016/j.energy.2018.08.205
Guo, Z., Deng, G., Fan, Y., & Chen, G. (2016). Performance optimization of adiabatic compressed air energy storage with ejector technology. Applied Thermal Engineering, 94, 193–197. https://doi.org/10.1016/j.applthermaleng.2015.10.047
Han, Y., Wang, X., Sun, H., Zhang, G., Guo, L., & Tu, J. (2019). CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance. Energy, 167, 469–483. https://doi.org/10.1016/j.energy.2018.10.195
Hemidi, A., Henry, F., Leclaire, S., Seynhaeve, J. M., & Bartosiewicz, Y. (2009). CFD analysis of a supersonic air ejector. Part II: Relation between global operation and local flow features. Applied Thermal Engineering, 29(14–15), 2990–2998. https://doi.org/10.1016/j.applthermaleng.2009.03.019
Hou, Y., Chen, F., Zhang, S., Chen, W., Zheng, J., Chong, D., & Yan, J. (2022). Numerical simulation study on the influence of primary nozzle deviation on the steam ejector performance. International Journal of Thermal Sciences, 179, 107633. https://doi.org/10.1016/j.ijthermalsci.2022.107633
Hwang, J. J., Cho, C. C., Wu, W., Chiu, C. H., Chiu, K. C., & Lin, C. H. (2015). Numerical and experimental investigation into passive hydrogen recovery scheme using vacuum ejector. Journal of Power Sources, 275, 539–546. https://doi.org/10.1016/j.jpowsour.2014.11.057
Kibar, A., Korkmaz, Y. S., & Yigit, K. S. (2025). Examination of flow in the monoblock directional valve: from pump to tank. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47, 125. https://doi.org/10.1007/s40430-025-05440-0
Koirala, R., Ve, Q. L., Zhu, B., Inthavong, K., & Date, A. (2021). A review on process and practices in operation and design modification of ejectors. Fluids, 6, 409. https://doi.org/10.3390/fluids6110409
Kuo, J. K., Wu, P. R., Yang, T. F., & Yan, W. M. (2023). Optimal technical analysis of vacuum ejector for passive hydrogen recovery. International Journal of Hydrogen Energy, 48(22), 8260–8272. https://doi.org/10.1016/j.ijhydene.2022.11.218
Li, Z., Xu, W., Liang, T., Ye, W., & Zhang, Z. (2024). Experimental and numerical studies on the performance of supersonic multi-nozzle ejector. Appl. Therm. Eng. 242, 122409. https://doi.org/10.1016/j.applthermaleng.2024.122409
Macia, L., Castilla, R., & Gámez, P. J. (2019). Simulation of ejector for vacuum generation. IOP Conference Series: Materials Science and Engineering, 659(1), 012002. https://doi.org/10.1088/1757-899X/659/1/012002
Metin, C., Gök, O., Atmaca, A. U., & Erek, A. (2019). Numerical investigation of the flow structures inside mixing section of the ejector. Energy, 166, 1216–1228. https://doi.org/10.1016/j.energy.2018.10.095
Mukhtar, H. K., Fadlalla, A., Ibrahim, R., & Ghani, S. (2024). Numerical investigation of the flow characteristics inside a supersonic vapor ejector. International Journal of Thermofluids, 24, 100912. https://doi.org/10.1016/j.ijft.2024.100912
Niu, L., & Zhang, X. (2024). Comparison of the performance enhancement of vacuum ejector by means of structure optimization and bypass methods. Energy, 297, 131263. http://dx.doi.org/10.2139/ssrn.4471729
Palacz, M., Haida, M., Smolka, J., Plis, M., Nowak, A. J., & Banasiak, K. (2018). A gas ejector for CO2 supercritical cycles. Energy, 163, 1207–1216. https://doi.org/10.1016/j.energy.2018.09.030
Ramesh, A. S., & Sekhar, S. J. (2018). Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector. Energy, 164, 1097–1113. https://doi.org/10.1016/j.energy.2018.09.010
Sadeghiseraji, J., Garcia-Vilchez, M., Castilla, R., & Raush, G. (2024). Recent advances in numerical simulation of ejector pumps for vacuum generation—A Review. Energies, 17(17), 4479. https://doi.org/10.3390/en17174479
Saini, M., Nur, R., Yunus, S., & Ibrahim, I. (2018). The influence of throat length and vacuum pressure on air pollutant filtration using ejector. AIP Conference Proceedings, 1977(1). https://doi.org/10.1063/1.5042959
Samsam-Khayani, H., Yoon, S. Y., Kim, M., & Kim, K. C. (2023). Experimental and numerical study on low-temperature supersonic ejector. International Journal of Thermofluids, 20 (June), 100407. https://doi.org/10.1016/j.ijft.2023.100407
Siemens. (2023). Simcenter STAR-CCM+ User Guide. Siemens Digital Industries Software.
Sun, W., Liu, C., Zhang, H., Sun, W., Xue, H., & Jia, L. (2022). Numerical analysis of two-stage vacuum ejector performance considering the influence of phase transition and non-condensable gases. Applied Thermal Engineering, 213, 118730. https://doi.org/10.1016/j.applthermaleng.2022.118730
Talebiyan, M. A., Nili-Ahmadabadi, M., & Ha, M. Y. (2024). Adjoint optimization of a supersonic ejector for under-expanded, isentropic, and over-expanded primary flow modes. Chemical Engineering Science 292, 119979. https://doi.org/10.1016/j.ces.2024.119979
Tang, Y., Li, Y., Liu, Z., Wu, H., & Fu, W. (2017). A novel steam ejector with auxiliary entrainment for energy conservation and performance optimization. Energy Conversion and Management, 148, 210–221. https://doi.org/10.1016/j.enconman.2017.05.076
Tavakoli, M., Nili-Ahmadabadi, M., Joulaei, A., and Ha, M. Y. (2023). Enhancing subsonic ejector performance by incorporating a fluidic oscillator as the primary nozzle: a numerical investigation. International Journal of Thermofluids, 20, 100429. https://doi.org/10.1016/j.ijft.2023.100429
Thongtip, T., & Aphornratana, S. (2017). An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector refrigerator. Applied Thermal Engineering, 110, 89–101. https://doi.org/10.1016/j.applthermaleng.2016.08.100
Udroiu, C. M., Mota-Babiloni, A., Gim´enez-Prades, P., Barrag´ an-Cervera, A., & Navarro-Esbrí J. (2023). Two-stage cascade configurations based on ejectors for ultra-low temperature refrigeration with natural refrigerants. International Journal of Thermofluids, 17 100287. https://doi.org/10.1016/j.ijft.2023.100287
Wen, C., Gong, L., Ding, H., & Yang, Y. (2020). Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Applied Energy, 279, 115831. https://doi.org/10.1016/j.apenergy.2020.115831
Xue, H., Wang, L., Jia, L., Xie, C., & Lv, Q. (2020). Design and investigation of a two-stage vacuum ejector for MED-TVC system. Applied Thermal Engineering, 167, 114713. https://doi.org/10.1016/j.applthermaleng.2019.114713
Yazici, F., Karadag, M., Gokluberk, P., & Kibar, A. (2024). Examining the uniformity of flow distribution in manifolds. Journal of Applied Fluid Mechanics, 17(5).  https://doi.org/10.47176/jafm.17.05.2302
Zaheer, Q., & Masud, J. (2017). Visualization of flow field of a liquid ejector pump using embedded LES methodology. Journal of Visualization, 20, 777–788. https://doi.org/10.1007/s12650-017-0429-3
Volume 18, Issue 9 - Serial Number 101
September 2025
Pages 2361-2376
  • Received: 14 December 2024
  • Revised: 09 March 2025
  • Accepted: 11 April 2025
  • Available online: 05 July 2025