Extraction for the Evolution Features of Cavitation Cloud Induced by the Self-excited Oscillating Jet

Document Type : Regular Article

Authors

Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, Shandong Province, 266100, China

10.47176/jafm.18.9.3262

Abstract

The evolution process of the cavitation cloud in a fluidic oscillator is revealed via the high-speed photography experiment and the extraction of image gray value. The proper orthogonal decomposition (POD) method is employed to extract modal features and analyze the flow fields of a large amount of image data. The basic idea of the POD method is to transform the data into a set of orthogonal basis functions namely eigenmodes or principal components by performing a singular value decomposition of the data matrix. It is found that the first-order mode has a high contribution rate to the flow field, and its shape is nearly identical with the average gray level image of cavitation cloud. Therefore, the first-order mode represents the aggregate average of the gray level field of the cavitation cloud, which means that the large-scale lower order modal structure can reflect the overall stability characteristics of the cavitation cloud. However, the small-scale higher order modal structure reflects the dynamic characteristics such as the development and shedding of the cavitation cloud. With the increase of the inlet flow rate, the stability of the cavitation flow field decreases. By comparing the relationship between the mode coefficient and the average gray value, it is also discovered that the lower order mode coefficient can reflect the variations of cavitation intensity.

Keywords

Main Subjects


Al-Obaidi, A. R. (2019). Investigation of effect of pumprotational speed on performance and detection of cavitation within a centrifugal pump using vibration analysis. Heliyon, 5(6), e01910. https://doi.org/10.1016/j.heliyon.2019.e01910
Al-Obaidi, A., (2018). Experimental and numerical investigations on the cavitation phenomenon in a centrifugal pump [Doctoral dissertation, University of Huddersfield]. Huddersfield, UK.
Chatterjee, A., (2000). An introduction to the proper orthogonal decomposition. Current Science, 78(7), 808-817. http://www.jstor.org/stable/24103957.
Chuah, L. F., Yusup, S., Abd Aziz, A. R., Bokhari, A., Klemeš, J. J., & Abdullah, M. Z. (2015). Intensification of biodiesel synthesis from waste cooking oil (Palm Olein) in a Hydrodynamic Cavitation Reactor: Effect of operating parameters on methyl ester conversion. Chemical Engineering and Processing: Process Intensification, 95, 235-240. https://doi.org/10.1016/j.cep.2015.06.018
Danlos, A., Ravelet, F., Coutier-Delgosha, O., & Bakir, F. (2014). Cavitation regime detection through Proper Orthogonal Decomposition: Dynamics analysis of the sheet cavity on a grooved convergent–divergent nozzle. International Journal of Heat and Fluid Flow, 47, 9-20. https://doi.org/10.1016/j.ijheatfluidflow.2014.02.001
Darandale, G. R., Jadhav, M. V., Warade, A. R., & Hakke, V. S. (2023). Hydrodynamic cavitation a novel approach in wastewater treatment: A review. Materials Today: Proceedings, 77, 960-968. https://doi.org/10.1016/j.matpr.2022.12.075
Dhanke, P. B., & Wagh, S. M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerging Contaminants, 6, 20-32. https://doi.org/10.1016/j.emcon.2019.12.001
Dhanke, P., Wagh, S., & Kanse, N. (2018). Degradation of fish processing industry wastewater in hydro-cavitation reactor. Materials Today: Proceedings, 5(2, Part 1), 3699-3703. https://doi.org/10.1016/j.matpr.2017.11.621
Dular, M., Khlifa, I., Fuzier, S., Adama Maiga, M., & Coutier-Delgosha, O. (2012). Scale effect on unsteady cloud cavitation. Experiments in Fluids, 53(5), 1233-1250. https://doi.org/10.1007/s00348-012-1356-7
Feng, L. H., Wang, J. J., & Pan, C. (2011). Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Physics of Fluids, 23(1). https://doi.org/10.1063/1.3540679
Ge, M., Manikkam, P., Ghossein, J., Kumar Subramanian, R., Coutier-Delgosha, O., & Zhang, G. (2022). Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects. Energy, 254, 124426.  https://doi.org/10.1016/j.energy.2022.124426
Gohil, P. P., & Saini, R. P. (2015). Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant. Energy, 93, 613-624. https://doi.org/10.1016/j.energy.2015.09.042
Gore, M. M., Saharan, V. K., Pinjari, D. V., Chavan, P. V., & Pandit, A. B. (2014). Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques. Ultrasonics Sonochemistry, 21(3), 1075-1082. https://doi.org/10.1016/j.ultsonch.2013.11.015
Hu, J., Yuan, M., Feng, G., Wang, X., & Li, D. (2023). Experimental investigation on the cavitation modulation mechanism in submerged self-sustained oscillating jets. Ocean Engineering, 274, 114108. https://doi.org/10.1016/j.oceaneng.2023.114108
Huang, Y., Wu, Y., Huang, W., Yang, F., & Ren, X. E. (2013). Degradation of chitosan by hydrodynamic cavitation. Polymer Degradation and Stability, 98(1), 37-43. https://doi.org/10.1016/j.polymdegradstab.2012.11.001
Hussain, L., & Khan, M. M. (2022). Recent progress in flow control and heat transfer enhancement of impinging sweeping jets using double feedback fluidic oscillators: A Review. Journal of Heat Transfer, 144(12).doi: https://doi.org/10.1115/1.4055673
Joulaei, A., Nili-Ahmadabadi, M., & Yeong Ha, M. (2023). Numerical study of the effect of geometric scaling of a fluidic oscillator on the heat transfer and frequency of impinging sweeping jet. Applied Thermal Engineering, 221, 119848. https://doi.org/10.1016/j.applthermaleng.2022.119848
Kim, S. H., & Kim, K. Y. (2019). Effects of installation conditions of fluidic oscillators on control of flow separation. AIAA Journal, 57(12), 5208-5219. https://doi.org/10.2514/1.J058527
Liu, G., Bie, H., Hao, Z., Wang, Y., Ren, W., & Hua, Z. (2022). Characteristics of cavitation onset and development in a self-excited fluidic oscillator. Ultrasonics Sonochemistry, 86, 106018. https://doi.org/10.1016/j.ultsonch.2022.106018
Liu, X., Song, J., Li, B., He, J., Zhang, Y., Li, W., & Xie, F. (2021a). Experimental study on unsteady characteristics of the transient cavitation flow. Flow Measurement and Instrumentation, 80, 102008. https://doi.org/10.1016/j.flowmeasinst.2021.102008
Liu, Y., Wu, Q., Huang, B., Zhang, H., Liang, W., & Wang, G. (2021b). Decomposition of unsteady sheet/cloud cavitation dynamics in fluid-structure interaction via POD and DMD methods. International Journal of Multiphase Flow, 142, 103690. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103690
Long, X., Zhang, J., Wang, J., Xu, M., Lyu, Q., & Ji, B. (2017). Experimental investigation of the global cavitation dynamic behavior in a venturi tube with special emphasis on the cavity length variation. International Journal of Multiphase Flow, 89, 290-298. https://doi.org/10.1016/j.ijmultiphaseflow.2016.11.004
Madane, K. R., & Ranade, V. V., (2024). Solid-liquid flow in fluidic oscillator: Influence of solids on jet oscillations and residence time distribution. Chemical Engineering Journal, 485, 149999. https://doi.org/10.1016/j.cej.2024.149999
Patil, P. N., Bote, S. D., & Gogate, P. R., (2014). Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation. Ultrasonics Sonochemistry, 21(5), 1770-1777. https://doi.org/10.1016/j.ultsonch.2014.02.024
Pawar, S. K., Mahulkar, A. V., Pandit, A. B., Roy, K., & Moholkar, V. S. (2017). Sonochemical effect induced by hydrodynamic cavitation: Comparison of venturi/orifice flow geometries. AIChE Journal, 63(10), 4705-4716. https://doi.org/10.1002/aic.15812
Qiu, T., Wang, K., Lei, Y., Wu, C., Liu, Y., Chen, X., & Guo, P. (2018). Investigation on effects of back pressure on submerged jet flow from short cylindrical orifice filled with diesel fuel. Energy, 162, 964-976. https://doi.org/10.1016/j.energy.2018.08.012
Seo, J. H., Zhu, C., & Mittal, R., (2018). Flow physics and frequency scaling of sweeping jet fluidic oscillators. AIAA Journal, 56(6), 2208-2219. https://doi.org/10.2514/1.J056563
Simpson, A., & Ranade, V. V. (2019). Modeling hydrodynamic cavitation in venturi: influence of venturi configuration on inception and extent of cavitation. AIChE Journal, 65(1), 421-433. https://doi.org/10.1002/aic.16411
Sonawat, A., Kim, S. J., Yang, H. M., Choi, Y. S., Kim, K. M., Lee, Y. K., & Kim, J. H. (2020). Positive displacement turbine - A novel solution to the pressure differential control valve failure problem and energy utilization. Energy, 190, 116400. https://doi.org/10.1016/j.energy.2019.116400
Song, Y., Hou, R., Liu, Z., Liu, J., Zhang, W., & Zhang, L. (2022). Cavitation characteristics analysis of a novel rotor-radial groove hydrodynamic cavitation reactor. Ultrasonics Sonochemistry, 86, 106028. https://doi.org/10.1016/j.ultsonch.2022.106028
Sun, Z., Li, D., Mao, Y., Feng, L., Zhang, Y., & Liu, C. (2022). Anti-cavitation optimal design and experimental research on tidal turbines based on improved inverse BEM. Energy, 239, 122263. https://doi.org/10.1016/j.energy.2021.122263
Wang, B., Su, H., & Zhang, B. (2021). Hydrodynamic cavitation as a promising route for wastewater treatment – A review. Chemical Engineering Journal, 412, 128685. https://doi.org/10.1016/j.cej.2021.128685
Wang, Z., Zhang, M., Kong, D., Huang, B., Wang, G., & Wang, C. (2018). The influence of ventilated cavitation on vortex shedding behind a bluff body. Experimental Thermal and Fluid Science, 98, 181-194. https://doi.org/10.1016/j.expthermflusci.2018.05.029
Wei, Y., Zhang, H., Fan, L., Gu, Y., Leng, X., Deng, Y., & He, Z. (2022). Experimental study into the effects of stability between multiple injections on the internal flow and near field spray dynamics of a diesel nozzle. Energy, 248, 123490. https://doi.org/10.1016/j.energy.2022.123490
Woszidlo, R., Ostermann, F., & Schmidt, H. J. (2019). Fundamental properties of fluidic oscillators for flow control applications. AIAA Journal, 57(3), 978-992. https://doi.org/10.2514/1.J056775
Wu, Y., Yu, S., & Zuo, L. (2019). Large eddy simulation analysis of the heat transfer enhancement using self-oscillating fluidic oscillators. International Journal of Heat and Mass Transfer, 131, 463-471. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.070
Xu, S., Long, X., Wang, J., Cheng, H., & Zhang, Z. (2022). Experiment on flow dynamics and cavitation structure in an axisymmetric venturi tube based on x-t diagrams and proper orthogonal decomposition. Experimental Thermal and Fluid Science, 136, 110648. https://doi.org/10.1016/j.expthermflusci.2022.110648
Xu, S., Wang, J., Cheng, H., Ji, B., & Long, X. (2020). Experimental study of the cavitation noise and vibration induced by the choked flow in a Venturi reactor. Ultrasonics Sonochemistry, 67, 105183. https://doi.org/10.1016/j.ultsonch.2020.105183
Zhang, Q., Gao, Y., Chu, M., Chen, P., Zhang, Q., & Wang, J. (2023). Enhanced energy conversion efficiency promoted by cavitation in gasoline direct injection. Energy, 265, 126117. https://doi.org/10.1016/j.energy.2022.126117