Al-Obaidi, A. R. (2019). Investigation of effect of pumprotational speed on performance and detection of cavitation within a centrifugal pump using vibration analysis.
Heliyon, 5(6), e01910.
https://doi.org/10.1016/j.heliyon.2019.e01910
Al-Obaidi, A., (2018). Experimental and numerical investigations on the cavitation phenomenon in a centrifugal pump [Doctoral dissertation, University of Huddersfield]. Huddersfield, UK.
Chuah, L. F., Yusup, S., Abd Aziz, A. R., Bokhari, A., Klemeš, J. J., & Abdullah, M. Z. (2015). Intensification of biodiesel synthesis from waste cooking oil (Palm Olein) in a Hydrodynamic Cavitation Reactor: Effect of operating parameters on methyl ester conversion.
Chemical Engineering and Processing: Process Intensification,
95, 235-240.
https://doi.org/10.1016/j.cep.2015.06.018
Danlos, A., Ravelet, F., Coutier-Delgosha, O., & Bakir, F. (2014). Cavitation regime detection through Proper Orthogonal Decomposition: Dynamics analysis of the sheet cavity on a grooved convergent–divergent nozzle.
International Journal of Heat and Fluid Flow,
47, 9-20.
https://doi.org/10.1016/j.ijheatfluidflow.2014.02.001
Darandale, G. R., Jadhav, M. V., Warade, A. R., & Hakke, V. S. (2023). Hydrodynamic cavitation a novel approach in wastewater treatment: A review.
Materials Today: Proceedings,
77, 960-968.
https://doi.org/10.1016/j.matpr.2022.12.075
Dhanke, P., Wagh, S., & Kanse, N. (2018). Degradation of fish processing industry wastewater in hydro-cavitation reactor.
Materials Today: Proceedings,
5(2, Part 1), 3699-3703.
https://doi.org/10.1016/j.matpr.2017.11.621
Dular, M., Khlifa, I., Fuzier, S., Adama Maiga, M., & Coutier-Delgosha, O. (2012). Scale effect on unsteady cloud cavitation.
Experiments in Fluids,
53(5), 1233-1250.
https://doi.org/10.1007/s00348-012-1356-7
Feng, L. H., Wang, J. J., & Pan, C. (2011). Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control.
Physics of Fluids,
23(1).
https://doi.org/10.1063/1.3540679
Ge, M., Manikkam, P., Ghossein, J., Kumar Subramanian, R., Coutier-Delgosha, O., & Zhang, G. (2022). Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects.
Energy,
254, 124426.
https://doi.org/10.1016/j.energy.2022.124426
Gore, M. M., Saharan, V. K., Pinjari, D. V., Chavan, P. V., & Pandit, A. B. (2014). Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.
Ultrasonics Sonochemistry,
21(3), 1075-1082.
https://doi.org/10.1016/j.ultsonch.2013.11.015
Hu, J., Yuan, M., Feng, G., Wang, X., & Li, D. (2023). Experimental investigation on the cavitation modulation mechanism in submerged self-sustained oscillating jets.
Ocean Engineering,
274, 114108.
https://doi.org/10.1016/j.oceaneng.2023.114108
Huang, Y., Wu, Y., Huang, W., Yang, F., & Ren, X. E. (2013). Degradation of chitosan by hydrodynamic cavitation.
Polymer Degradation and Stability,
98(1), 37-43.
https://doi.org/10.1016/j.polymdegradstab.2012.11.001
Hussain, L., & Khan, M. M. (2022). Recent progress in flow control and heat transfer enhancement of impinging sweeping jets using double feedback fluidic oscillators: A Review.
Journal of Heat Transfer,
144(12).doi:
https://doi.org/10.1115/1.4055673
Joulaei, A., Nili-Ahmadabadi, M., & Yeong Ha, M. (2023). Numerical study of the effect of geometric scaling of a fluidic oscillator on the heat transfer and frequency of impinging sweeping jet.
Applied Thermal Engineering,
221, 119848.
https://doi.org/10.1016/j.applthermaleng.2022.119848
Kim, S. H., & Kim, K. Y. (2019). Effects of installation conditions of fluidic oscillators on control of flow separation.
AIAA Journal,
57(12), 5208-5219.
https://doi.org/10.2514/1.J058527
Liu, G., Bie, H., Hao, Z., Wang, Y., Ren, W., & Hua, Z. (2022). Characteristics of cavitation onset and development in a self-excited fluidic oscillator.
Ultrasonics Sonochemistry,
86, 106018.
https://doi.org/10.1016/j.ultsonch.2022.106018
Liu, X., Song, J., Li, B., He, J., Zhang, Y., Li, W., & Xie, F. (2021a). Experimental study on unsteady characteristics of the transient cavitation flow.
Flow Measurement and Instrumentation,
80, 102008.
https://doi.org/10.1016/j.flowmeasinst.2021.102008
Liu, Y., Wu, Q., Huang, B., Zhang, H., Liang, W., & Wang, G. (2021b). Decomposition of unsteady sheet/cloud cavitation dynamics in fluid-structure interaction via POD and DMD methods.
International Journal of Multiphase Flow,
142, 103690.
https://doi.org/10.1016/j.ijmultiphaseflow.2021.103690
Long, X., Zhang, J., Wang, J., Xu, M., Lyu, Q., & Ji, B. (2017). Experimental investigation of the global cavitation dynamic behavior in a venturi tube with special emphasis on the cavity length variation.
International Journal of Multiphase Flow,
89, 290-298.
https://doi.org/10.1016/j.ijmultiphaseflow.2016.11.004
Madane, K. R., & Ranade, V. V., (2024). Solid-liquid flow in fluidic oscillator: Influence of solids on jet oscillations and residence time distribution.
Chemical Engineering Journal,
485, 149999.
https://doi.org/10.1016/j.cej.2024.149999
Patil, P. N., Bote, S. D., & Gogate, P. R., (2014). Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation.
Ultrasonics Sonochemistry,
21(5), 1770-1777.
https://doi.org/10.1016/j.ultsonch.2014.02.024
Pawar, S. K., Mahulkar, A. V., Pandit, A. B., Roy, K., & Moholkar, V. S. (2017). Sonochemical effect induced by hydrodynamic cavitation: Comparison of venturi/orifice flow geometries.
AIChE Journal,
63(10), 4705-4716.
https://doi.org/10.1002/aic.15812
Qiu, T., Wang, K., Lei, Y., Wu, C., Liu, Y., Chen, X., & Guo, P. (2018). Investigation on effects of back pressure on submerged jet flow from short cylindrical orifice filled with diesel fuel.
Energy,
162, 964-976.
https://doi.org/10.1016/j.energy.2018.08.012
Seo, J. H., Zhu, C., & Mittal, R., (2018). Flow physics and frequency scaling of sweeping jet fluidic oscillators.
AIAA Journal,
56(6), 2208-2219.
https://doi.org/10.2514/1.J056563
Simpson, A., & Ranade, V. V. (2019). Modeling hydrodynamic cavitation in venturi: influence of venturi configuration on inception and extent of cavitation.
AIChE Journal,
65(1), 421-433.
https://doi.org/10.1002/aic.16411
Sonawat, A., Kim, S. J., Yang, H. M., Choi, Y. S., Kim, K. M., Lee, Y. K., & Kim, J. H. (2020). Positive displacement turbine - A novel solution to the pressure differential control valve failure problem and energy utilization.
Energy,
190, 116400.
https://doi.org/10.1016/j.energy.2019.116400
Song, Y., Hou, R., Liu, Z., Liu, J., Zhang, W., & Zhang, L. (2022). Cavitation characteristics analysis of a novel rotor-radial groove hydrodynamic cavitation reactor.
Ultrasonics Sonochemistry,
86, 106028.
https://doi.org/10.1016/j.ultsonch.2022.106028
Sun, Z., Li, D., Mao, Y., Feng, L., Zhang, Y., & Liu, C. (2022). Anti-cavitation optimal design and experimental research on tidal turbines based on improved inverse BEM.
Energy,
239, 122263.
https://doi.org/10.1016/j.energy.2021.122263
Wang, Z., Zhang, M., Kong, D., Huang, B., Wang, G., & Wang, C. (2018). The influence of ventilated cavitation on vortex shedding behind a bluff body.
Experimental Thermal and Fluid Science,
98, 181-194.
https://doi.org/10.1016/j.expthermflusci.2018.05.029
Wei, Y., Zhang, H., Fan, L., Gu, Y., Leng, X., Deng, Y., & He, Z. (2022). Experimental study into the effects of stability between multiple injections on the internal flow and near field spray dynamics of a diesel nozzle.
Energy,
248, 123490.
https://doi.org/10.1016/j.energy.2022.123490
Woszidlo, R., Ostermann, F., & Schmidt, H. J. (2019). Fundamental properties of fluidic oscillators for flow control applications.
AIAA Journal,
57(3), 978-992.
https://doi.org/10.2514/1.J056775
Xu, S., Long, X., Wang, J., Cheng, H., & Zhang, Z. (2022). Experiment on flow dynamics and cavitation structure in an axisymmetric venturi tube based on x-t diagrams and proper orthogonal decomposition.
Experimental Thermal and Fluid Science,
136, 110648.
https://doi.org/10.1016/j.expthermflusci.2022.110648
Xu, S., Wang, J., Cheng, H., Ji, B., & Long, X. (2020). Experimental study of the cavitation noise and vibration induced by the choked flow in a Venturi reactor.
Ultrasonics Sonochemistry,
67, 105183.
https://doi.org/10.1016/j.ultsonch.2020.105183
Zhang, Q., Gao, Y., Chu, M., Chen, P., Zhang, Q., & Wang, J. (2023). Enhanced energy conversion efficiency promoted by cavitation in gasoline direct injection.
Energy,
265, 126117.
https://doi.org/10.1016/j.energy.2022.126117