Abdulnaim, A., Elkholy, A., Elmously, M., Moneib, H., Roberts, W. L., & Elbaz, A. M. (2024). On the stability and characteristics of biogas/methane/air flames fired by a double swirl burner.
Flow, Turbulence and Combustion, 112(3), 751-767.
https://doi.org/10.1016/j.fuel.2022.123498
Anderson Jr, J. D. (1991). Fundamentals of Aerodynamics, McGraw-Hill.
Borghi, R., & Destriau, M. (1995). Combustion and Flames Edition Technip: Paris.
Bouziane, A., Alami, A., Zaitri, M., Bouchame, B., & Bouchetara, M. (2021). Investigation of swirl stabilized ch
4 air flame with varied hydrogen content by using computational fluid dynamics (CFD) to study the temperature field and flame shape.
Engineering, Technology & Applied Science Research, 11(2), 6943-6948.
https://doi.org/10.48084/etasr.4034
Carlsson, H., Carlsson, C., Fuchs, L., & Bai, X. S. (2014). Large eddy simulation and extended dynamic mode decomposition of flow-flame interaction in a lean premixed low swirl stabilized flame.
Flow, Turbulence and Combustion, 93, 505-519.
https://doi.org/10.1007/s10494-014-9560-6
Cellek, M. S., & Pınarbaşı, A. (2018). Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas and hydrogen as fuels.
International Journal of Hydrogen Energy, 43(2), 1194-1207.
https://doi.org/10.1016/j.ijhydene.2017.05.107.
Cellek, M. S., Pınarbaşı, A., Coskun, G., & Demir, U. (2023). The impact of turbulence and combustion models on flames and emissions in a low swirl burner.
Fuel, 343, 127905.
https://doi.org/10.1016/j.fuel.2023.127905
Chan, C., Lau, K., Chin, W., & Cheng, R. (1992). Freely propagating open premixed turbulent flames stabilized by swirl. Paper presented at the Symposium (International) on Combustion.
Cheng, R., Littlejohn, D., Strakey, P., & Sidwell, T. (2009). Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions.
Proceedings of the Combustion Institute, 32(2), 3001-3009.
https://doi.org/10.1016/j.proci.2008.06.141
Chong, C. T., Lam, S. S., & Hochgreb, S. (2016). Effect of mixture flow stratification on premixed flame structure and emissions under counter-rotating swirl burner configuration.
Applied Thermal Engineering, 105, 905-912.
https://doi.org/10.1016/j.applthermaleng.2016.03.164
Daurer, G., Schwarz, S., Demuth, M., Gaber, C., & Hochenauer, C. (2024). Experimental and numerical analysis of industrial-type low-swirl combustion of hydrogen enriched natural gas including OH* chemiluminescence imaging. International Journal of Hydrogen Energy, 80, 890-906. https://doi.org/10.1016/j.ijhydene.2024.07.119
Fluent, A. (2015). Theory guide: ANSYS Canonsburg.
Gong, Y., Fredrich, D., Marquis, A. J., & Jones, W. P. (2023). Numerical investigation of combustion instabilities in swirling flames with hydrogen enrichment.
Flow, Turbulence and Combustion, 111(3), 953-993.
https://doi.org/10.1007/s10494-023-00476-5
Li, X., & Jia, L. (2014). Investigation on combustion characteristics and NO formation of methane with swirling and non-swirling high temperature air.
Journal of Thermal Science, 23, 472-479.
https://doi.org/10.1007/s11630-014-0731-5
Magnussen, B. F., & Hjertager, B. H. (1977). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Paper presented at the Symposium (international) on Combustion.
Mazzotta, L., Lamioni, R., Agati, G., Evangelisti, A., Rispoli, F., Valera-Medina, A., & Borello, D. (2025). On the impact of CFD turbulence models for premixed NH
3/H
2 combustion on emissions and flame characteristics in a swirl-stabilized burner.
Flow, Turbulence and Combustion, 1-21
https://doi.org/10.1007/s10494-025-00638-7
Muppala, S., Manickam, B., & Dinkelacker, F. (2015). A comparative study of different reaction models for turbulent methane/hydrogen/air combustion.
Journal of Thermal Engineering, 1(5), 367-380.
https://doi.org/10.18186/jte.60394
Nanduri, J., Parsons, D. R., Yilmaz, S. L., Celik, I. B., & Strakey, P. A. (2010). Assessment of RANS-based turbulent combustion models for prediction of emissions from lean premixed combustion of methane.
Combustion Science and Technology, 182(7), 794-821.
https://doi.org/10.1080/00102200903341546
Nemitallah, M. A., Aljehani, S. K., & Haque, M. A. (2023). Effects of fuel-hydrogen levels on combustion, operability, and emission parameters of CH4/H2/O2/CO2 stratified flames in a dual-swirl gas turbine burner. Engineering Applications of Computational Fluid Mechanics, 17(1), 2229406.
Nogenmyr, K. J., Fureby, C., Bai, X. S., Petersson, P., Collin, R., & Linne, M. (2009). Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame.
Combustion and Flame, 156(1), 25-36.
https://doi.org/10.1016/j.combustflame.2008.06.014
Ouali, S., Bentebbiche, A., & Belmrabet, T. (2016). Numerical simulation of swirl and methane equivalence ratio effects on premixed turbulent flames and NOx apparitions.
Journal of Applied Fluid Mechanics, 9(2), 987-998.
https://doi.org/10.18869/acadpub.jafm.68.225.22603
Pang, Y. S., Law, W. P., Pung, K. Q., & Gimbun, J. (2018). A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner.
Bulletin of Chemical Reaction Engineering & Catalysis, 13(1), 155-169.
https://doi.org/10.9767/bcrec.13.1.1395.155-169
Stefanizzi, M., Stefanizzi, S., Ceglie, V., Capurso, T., Torresi, M., & Camporeale, S. M. (2021). Analysis of the partially premixed combustion in a labscale swirl-stabilized burner fueled by a methane-hydrogen mixture. Paper presented at the E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202131211004
Tidswell, M., Muppala, S., & Rao, V. C. M. (2018). A numerical study of two turbulent flame speed models for H2/CH4/air premixed combustion. Paper presented at the International Conference on Combustion Physics and Chemistry.
Xiao, C., Omidi, M., Surendar, A., Alizadeh, A. A., Bokov, D. O., Binyamin, & Toghraie, D. (2022). Simulation of combustion flow of methane gas in a premixed low-swirl burner using a partially premixed combustion model.
Journal of Thermal Science, 31(5), 1663-1681.
https://doi.org/10.1007/s11630-022-1611-z