An, Z. G., Zhang, C. J., Gao, Z. Y., Luo, Y. S. & Dong, Y. (2022). Heat dissipation performance of hybrid lithium battery thermal management system using bionic nephrolepis micro-channel.
Applied Thermal Engineering, 217, 119127.
https://doi.org/10.1016/j.applthermaleng.2022.119127
Beauvais, F. N. (1965) An aerodynamic look at automotive radiators. SAE Technical Papers.
Cheng, L., Sun, H. Q., Dai, X. J., & B. X. Wei (2024). Optimization of heat-dissipation structure of high-power diode laser in space environments.
Micromachines, 15(8), 968.
https://doi.org/10.3390/mi15080968
John, D. (2007). Fundamentals of computational fluid dynamics and its applications. Beijing: Machinery Industry Press.
Khan, T. A., & Ahmad, H. (2019). CFD-based comparative performance analysis of different nanofluids used in automobile radiators.
Arabian Journal For Science And Engineering, 44, 5787-5799.
https://doi.org/10.1007/s13369-019-03750-9
Li, S., Li, J., Xu, H., Ma, J., & Peng, H. (2020). Numerical study on heat transfer and flow characteristics of novel microchannel heat sinks.
International Journal of Thermal Sciences, 176. 107535.
https://doi.org/10.1016/j.ijthermalsci.2022.107535
Li, B., Wang, W. H., Bei, S. Y., & Z. Q. Quan (2022). Analysis of heat dissipation performance of battery liquid cooling plate based on bionic structure.
Sustainability, 14(9), 5541.
https://doi.org/10.3390/su14095541
Li, C. Q., Huang, Y. L., Shang, & H. Y. Huang (2020). Study on the flow and heat dissipation of water-based alumina nanofluids in microchannels.
Case Studies in Thermal Engineering,, 22, 100746.
https://doi.org/10.1016/j.csite.2020.100746
Li, H. G., Z. Hou, Y. F. Wei, R. F. Zhao, T. Ji, W. Y. Wang, R. Wen, K. B. Zheng, S. W. Yu and Y. X. Cui (2023). Efficient heat dissipation perovskite lasers using a high-thermal-conductivity diamond substrate. Science. China Materials, 2023, 66(6), 2400-2407. http:// doi.org/10.1007/s40843-022-2355-6
Ma, C. B., Sun, Y. N., Wu, Y. J., Zhang, Q. Z., Wang, Y., & G. F. Ding (2023). A bio-inspired fractal microchannel heat sink with secondary modified structure and sub-total-sub fluid transmission mode for high heat flux and energy-saving heat dissipation.
International Journal of Heat and Mass Transfer, 202, 123717.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123717
Maghrabie, H. M., & Mousa, H. M. (2020). Thermal performance intensification of car radiator using SiO2/water and ZnO/water nanofluids.
Journal Of Thermal Science And Engineering Applications,
14(3), 034501.
https://doi.org/10.1115/1.4051382
Nakhchi, M. E., & Esfahani, J. A. (2020). CFD approach for two-phase CuO nanofluid flow through heat exchangers enhanced by double perforated louvered strip insert.
Powder Technology, 367, 877-888.
https://doi.org/10.1016/j.powtec.2020.04.043
Phillips R. J. (1988). Microchannel heat sinks. The Lincoln Laboratory Journal, 1(1), 31-48.
Polenz, S., Kolbe, C., Bittner, F., López, E., Brückner, F., & Leyens, c. (2021). Integration of pure copper to optimize heat dissipation in injection mould inserts using laser metal deposition.
The Journal of Laser Applications, 33(1).
https://doi.org/10.2351/7.0000303
Qu, W., & Mudawar, I. (2002). Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink.
International Journal of Heat and Mass Transfer,
45(12), 2549-2565.
https://doi.org/10.1016/S0017-9310(01)00337-4
Rott, N. (1990). Note on the history of the Reynolds number. Annual Review of Fluid Mechanics, 22(1), 1-12.
Song, M. J., Z. Y. Jiang, C. B. Dang, Y. Y. Jiang, J. Shen, X. Y. Luo (2020). Mathematical modeling investigation on flow boiling and high efficiency heat dissipation of two rectangular radial microchannel heat exchangers.
International Journal of Heat and Mass Transfer, 190, 122736.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122736
Subramanian, S., Sridhar, K. S, & Umesh, C. K. (2019). Experimental investigation of microchannel heat sink with modified hexagonal fins.
Journal of Applied Fluid Mechanics, 12(3), 647-655.
https://doi.org/10.1115/1.4040956
Tan, P., Liu, X. H., Liu, C. Y., Feng, J. Y., & Yang, K. (2024). Experimental study on heat transfer performance of a series combined microchannel heat dissipation system based on Al2O3 nanofluid.
Applied Thermal Engineering, 240, 122237.
https://doi.org/10.1016/j.applthermaleng.2023.122237
Vinoth, R., & Senthil Kumar, D. (2018). Experimental investigation on heat transfer characteristics of an oblique finned microchannel heat sink with different channel cross sections.
Heat Mass Transfer, 54, 3809-3817.
https://doi.org/10.1007/s00231-018-2398-z
Wu, T., Wang, L. Z., Tang, Y. C., Yin, C., & Li, X. K. (2022). Flow and heat transfer performances of liquid metal based microchannel heat sinks under high temperature conditions.
Micromachines, 13(1), 95.
https://doi.org/10.3390/mi13010095
Xia, Y., Chen, L., Luo, J. W., & W. Tao (2023). Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization.
Applied Energy, 330, 120335.
https://doi.org/10.1016/j.apenergy.2022.120335
Xiang, J. H., Deng, L. M., Zhou, C., Zhao, H. L., Huang, J. L. & S. L. Tao (2022). Heat transfer performance and structural optimization of a novel micro-channel heat sink.
Chinese Journal of Mechanical Engineering, 35(1), 38.
https://doi.org/10.1186/s10033-022-00704-5
Xu, F., & Wu, H. (2018). Experimental study of water flow and heat transfer in silicon micro-pin-fin heat sinks.
Journal of Heat Transfer, 140(12), 122401.
https://doi.org/10.1115/1.4040956
Fan, Y., Chen, C., Fu, R., Wang, Q., Cao, L., Chen, X., ... & Kang, J. (2024). Heat transfer performance study of fluid rotating microchannel heat sink,
Case Studies in Thermal Engineering, 58, 104390, ISSN 2214-157X.
https://doi.org/10.1016/j.csite.2024.104390
Yue, L., Qi, C., & Tang, M. (2024). A novel composite bionic leaf vein and honeycomb microchannel heat sink applied for thermal management of electronic components. Appl. Therm. Eng., 252, 123716. htps://doi.org/10.1016/j.applthermaleng.2024.123716
Zeng, L., Deng, D. X., Zhong, N. B., & Zheng, G. S. (2021). Thermal and flow performance in microchannel heat sink with open-ring pin fins.
International Journal of Mechanical Sciences, 200, 106445.
https://doi.org/10.1016/j.ijmecsci.2021.106445
Zhao, X. H., Su, L. M., Jiang, J., Deng, W. Y., & Zhao, D. (2023). A review of working fluids and flow state effects on thermal performance of micro-channel oscillating heat pipe for aerospace heat dissipation.
Aerospace, 10(2), 179.
https://doi.org/10.3390/aerospace10020179
Zheng, R., Wu, Y. J., Li, Y. H., Wang, G. L., Ding, G. F., & Sun Y. N. (2020). Development of a hierarchical microchannel heat sink with flow field reconstruction and low thermal resistance for high heat flux dissipation.
International Journal of Heat and Mass Transfer, 182, 121925.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121925