Heat Transfer Optimization of Three Sections of Mini-channel with CuO Nanofluid

Document Type : Regular Article

Authors

1 College of Engineering-Mechanical Engineering Department -University of Babylon, Babylon, 51001, Iraq

2 Mechanical Power Engineering Department -College of Engineering and Technologies-Al-Mustaqbal University, Babylon, 51001, Iraq

10.47176/jafm.18.9.3301

Abstract

Three-dimensional channel designs (rectangular, convergent, and converge-diverge) using distilled water and (CuO) nanofluids as a coolant have been compared numerically and experimentally. The flow rate of coolant, and concentration of volume, with Reynolds number (200≤Re≤1000) and volume fraction (0%≤φ≤7.5%) are applied. The heat flux was provided from below to simulate the operation of a real heat sink, while the rest of the outer surfaces were isolated to compare the optimum performance between three cross sectional areas. To prove the accurateness of the numerical results and the reliability of the program software, a comparison was made between the experimental and numerical outcomes. The wall temperature and average Nusselt number of pure water and nanofluid were chosen as comparison parameters since they represent global parameters. The comparison results showed good coincidence of wall temperature and Nusselt number results for both distilled and nanofluid. According to the results, raising the nano concentration can improve the heat sink's execution and the Nusselt number improved by 38.4% at a volumetric concentration of 7.5%, while the enhancement reaches 10% when varying the form of minichannel. In general, heat transfer is enhanced with increasing Reynolds number for all proposed shapes. In another context, the results of the performance evaluation criteria showed that the convergent channel has the highest value, followed by the convergent-divergent channel, compared to the rectangular channel. 

Keywords

Main Subjects


Abdollahi, A., Mohammed, H. A., Vanaki, S. M., Osia, A., & Haghighi, M. G. (2017). Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alexandria Engineering Journal56(1), 161-170.‏ https://doi.org/10.1016/j.aej.2016.09.019
Abdulqadur, A. A., Jaffal, H. M., & Khudhur, D. S. (2019). Performance optimiation of a cylindrical mini-channel heat sink using hybrid straight–wavy channel. International Journal of Thermal Sciences146, 106111.‏ https://doi.org/10.1016/j.ijthermalsci.2019.106111
Al-Mohsen, S. A. A., Abed, I. M., & Ali, F. H. (2021). A numerical comparison of circular and corrugation heat sink for laminar CuO–water nano-fluid flow and heat transfer enhancement. Applied Nanoscience, 1-28.‏ https://doi.org/10.1007/s13204-021-02003-2
Arshad, W., & Ali, H. M. (2017). Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. International Journal of Heat and Mass Transfer110, 248-256.‏ https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.032
Azizi, Z., Alamdari, A., & Malayeri, M. R. (2015). Convective heat transfer of Cu–water nanofluid in a cylindrical microchannel heat sink. Energy Conversion and Management101, 515-524.‏ https://doi.org/10.1016/j.enconman.2015.05.073
Azizi, Z., Alamdari, A., & Malayeri, M. R. (2016). Thermal performance and friction factor of a cylindrical microchannel heat sink cooled by Cu-water nanofluid. Applied Thermal Engineering99, 970-978.‏ https://doi.org/10.1016/j.applthermaleng.2016.01.140
Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics20(4), 571-571.‏ https://doi.org/10.1063/1.1700493
Falahat, A., Bahoosh, R., Noghrehabadi, A., & Rashidi, M. M. (2019). Experimental study of heat transfer enhancement in a novel cylindrical heat sink with helical minichannels. Applied Thermal Engineering154, 585-592.‏ https://doi.org/10.1016/j.applthermaleng.2019.03.120
Farade, R. A., Wahab, N. I. B. A., Mansour, D. E. A., Junaidi, N., Soudagar, M. E. M., Rajamony, R. K., & AlZubaidi, A. (2024). A review on ultrasonic alchemy of oil-based nanofluids for cutting-edge dielectric and heat transfer oils. Journal of Molecular Liquids, 125312.‏ https://doi.org/10.1016/j.molliq.2024.125312
Farsad, E., Abbasi, S. P., Zabihi, M. S., & Sabbaghzadeh, J. (2011). Numerical simulation of heat transfer in a micro channel heat sinks using nanofluids. Heat and Mass Transfer47(4), 479-490.‏ https://doi.org/10.1007/s00231-010-0735-y
Fazeli, S. A., Hashemi, S. M. H., Zirakzadeh, H., & Ashjaee, M. (2012). Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices and Microstructures51(2), 247-264.‏ https://doi.org/10.1016/j.spmi.2011.11.017
Feng, Z., Luo, X., Guo, F., Li, H., & Zhang, J. (2017). Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts. Applied Thermal Engineering116, 597-609.‏ https://doi.org/10.1016/j.applthermaleng.2017.01.091
Ghani, I. A., Kamaruzaman, N., & Sidik, N. A. C. (2017). Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. International Journal of Heat and Mass Transfer108, 1969-1981.‏ https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.046
Ghasemi, S. E., Ranjbar, A. A., & Hosseini, M. J. (2017). Numerical study on effect of CuO-water nanofluid on cooling performance of two different cross-sectional heat sinks. Advanced Powder Technology28(6), 1495-1504.‏ https://doi.org/10.1016/j.apt.2017.03.019
Gunnasegaran, P., Mohammed, H. A., Shuaib, N. H., & Saidur, R. (2010). The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. International Communications in Heat and Mass Transfer37(8), 1078-1086.‏ https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014
Hadavand, M., Yousefzadeh, S., Akbari, O. A., Pourfattah, F., Nguyen, H. M., & Asadi, A. (2019). A numerical investigation on the effects of mixed convection of Ag-water nanofluid inside a sim-circular lid-driven cavity on the temperature of an electronic silicon chip. Applied Thermal Engineering162, 114298.‏ https://doi.org/10.1016/j.applthermaleng.2019.114298
Najafabadi, H., & Moraveji, K. (2016). Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach. Iranian Journal of Chemical Engineering (IJChE)13(4), 46-61.‏ https://doi.org/20.1001.1.17355397.2016.13.4.4.3
Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals1(3), 187-191.‏ https://doi.org/10.1021/i160003a005
Heidarshenas, A., Azizi, Z., Peyghambarzadeh, S. M., & Sayyahi, S. (2020). Experimental investigation of the particle size effect on heat transfer coefficient of Al 2 O 3 nanofluid in a cylindrical microchannel heat sink. Journal of Thermal Analysis and Calorimetry141, 957-967.‏ https://doi.org/10.1007/s10973-019-09033-7
Ho, C. J., & Chen, W. C. (2013). An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink. Applied Thermal Engineering50(1), 516-522.‏ https://doi.org/10.1016/j.applthermaleng.2012.07.037
Jawad, M., Khalifa, H. A. E. W., Shaaban, A. A., Akgül, A., Riaz, M. B., & Sadiq, N. (2024a). Characteristics of heat transportation in MHD flow of chemical reactive micropolar nanofluid with moving slip conditions across stagnation points. Results in Engineering21, 101954.‏ https://doi.org/10.1016/j.rineng.2024.101954
Jawad, M., Sadiq, N., & Ali, M. R. (2024b). Analysis of chemical reactive tangent hyperbolic nanofluid flow with joule heating and motile microorganisms through stretchable surface. Bio Nano Science14(2), 605-618.‏ https://doi.org/10.1007/s12668-023-01268-x
Kahani, M. (2020). Simulation of nanofluid flow through rectangular microchannel by modified thermal dispersion model. Heat Transfer Engineering41(4), 377-392.‏ https://doi.org/10.1080/01457632.2018.1540464
Khoshvaght-Aliabadi, M., Hassani, S. M., & Mazloumi, S. H. (2017). Enhancement of laminar forced convection cooling in wavy heat sink with rectangular ribs and Al2O3/water nanofluids. Experimental Thermal and Fluid Science89, 199-210.‏ https://doi.org/10.1016/j.expthermflusci.2017.08.017
Kline, S. J. (1963). Describing uncertainties in single-sample experiments. Mech. Eng.75, 3-8.‏
Kulandaivel, S., Ngui, W. K., Samykano, M., Rajamony, R. K., Suraparaju, S. K., Abd Ghafar, N. S., & Mat Noor, M. (2024a). Enhanced heat transfer efficiency through formulation and rheo‐thermal analysis of palm oil‐based CNP/SiO2 binary nanofluid. Energy Technology, 2400314.‏ https://doi.org/10.1002/ente.202400314
Kulandaivel, S., Samykano, M., Keng, N. W., Rajamony, R. K., Suraparaju, S. K., Sofiah, A. G. N., & Kalidasan, B. (2024b). Nanotechnology Revolutionizing Heat Transfer: A Review of Nanofluid Research and Applications. Malaysian Journal of Chemistry, 26(3), 192-210. https://doi.org/10.55373/mjchem.v26i.192
Kumar, P. M., & Kumar, C. A. (2020). Numerical study on heat transfer performance using Al2O3/water nanofluids in six circular channel heat sink for electronic chip. Materials Today: Proceedings21, 194-201. https://doi.org/10.1016/j.matpr.2019.04.220.
Kumar, R., Tiwary, B., & Singh, P. K. (2022). Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink. Applied Thermal Engineering201, 117787.‏ https://doi.org/10.1016/j.applthermaleng.2021.117787.
Moghanlou, F. S., Noorzadeh, S., Ataei, M., Vajdi, M., Asl, M. S., & Esmaeilzadeh, E. (2020). Experimental investigation of heat transfer and pressure drop in a minichannel heat sink using Al2O3 and TiO2–water nanofluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering42(6), 315.‏ https://doi.org/10.1007/s40430-020-02403-5
Muhammad, N. M. A., Sidik, N. A. C., Saat, A., & Abdullahi, B. (2019). Effect of nanofluids on heat transfer and pressure drop characteristics of diverging-converging minichannel heat sink. CFD Letters11(4), 105-120.‏  
Naphon, P., Nakharintr, L., & Wiriyasart, S. (2018). Continuous nanofluids jet impingement heat transfer and flow in a micro-channel heat sink. International Journal of Heat and Mass Transfer126, 924-932.‏ https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.101
Naranjani, B., Roohi, E., & Ebrahimi, A. (2021). Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofluids. Journal of Thermal Analysis and Calorimetry146, 2549-2560.‏ https://doi.org/10.1007/s10973-020-10225-9
Ragueb, H., & Mansouri, K. (2023). Exact solution of the Graetz–Brinkman problem extended to non-Newtonian nanofluids flow in elliptical microchannels. Journal of Engineering Mathematics140(1), 10.‏ https://doi.org/10.1007/s10665-023-10267-6
Ragueb, H., Tahiri, A., Behnous, D., Manser, B., Rachedi, K., & Mansouri, K. (2023). Irreversibilities and heat transfer in magnetohydrodynamic microchannel flow under differential heating. International Communications in Heat and Mass Transfer149, 107155. https://doi.org/10.1016/j.icheatmasstransfer.2023.107155
Ramasekhar, G., & Jawad, M. (2024). Characteristics of MWCNT, SWCNT, Cu and water based on magnetized flow of nanofluid with Soret and Dufour effects induced by moving wedge: Consequence of Falkner–Skan power law. Numerical Heat Transfer, Part A: Applications, 1-15.‏ https://doi.org/10.1080/10407782.2024.2341270
Ramasekhar, G., Divya, A., Jakeer, S., Reddy, S. R. R., Algehyne, E. A., Jawad, M., ... & Hassani, M. K. (2024). Heat transfer innovation of engine oil conveying SWCNTs-MWCNTs-TiO2 nanoparticles embedded in a porous stretching cylinder. Scientific Reports14(1), 16448.‏ https://doi.org/10.1038/s41598-024-65740-8
Saadoon, Z. H., Ali, F. H., & Sheikholeslami, M. (2023). Numerical investigation of heat transfer enhancement using (Fe3O4 and Ag-H2O) nanofluids in (converge-diverge) mini-channel heat sinks. Materials Today: Proceedings80, 2983-2996.‏ https://doi.org/10.1016/j.matpr.2021.07.091
Saadoon, Z. H., Ali, F. H., Hamzah, H. K., Abed, A. M., & Hatami, M. (2022). Improving the performance of mini-channel heat sink by using wavy channel and different types of nanofluids. Scientific Reports12(1), 9402.‏ https://doi.org/10.1038/s41598-022-13519-0
Sadiq, N., Jawad, M., Khalid, F., Jahan, S., & Hassan, A. M. (2024). Comparative analysis of non-Newtonian and Newtonian fluid flow with dual slip in the presence of motile microorganisms and nanoparticles. BioNanoScience14(2), 1504-1519.‏ https://doi.org/10.1007/s12668-023-01284-x
Saeed, M., & Kim, M. H. (2018). Heat transfer enhancement using nanofluids (Al2O3-H2O) in mini-channel heatsinks. International Journal of Heat and Mass Transfer120, 671-682.‏ https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.075
Sajid, M. U., Ali, H. M., Sufyan, A., Rashid, D., Zahid, S. U., & Rehman, W. U. (2019). Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. Journal of Thermal Analysis and Calorimetry137(4), 1279-1294.‏  https://doi.org/10.1007/s10973-019-08043-9
Sakanova, A., Keian, C. C., & Zhao, J. (2015). Performance improvements of microchannel heat sink using wavy channel and nanofluids. International Journal of Heat and Mass Transfer89, 59-74.‏ https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.033
Sivakumar, A., Alagumurthi, N., & Senthilvelan, T. (2016). Experimental investigation of forced convective heat transfer performance in nanofluids of Al 2 O 3/water and CuO/water in a serpentine shaped micro channel heat sink. Heat and Mass Transfer52, 1265-1274.‏ https://doi.org/10.1007/s00231-015-1649-5
Sohel, M. R., Khaleduzzaman, S. S., Saidur, R., Hepbasli, A., Sabri, M. F. M., & Mahbubul, I. M. (2014). An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. International Journal of Heat and Mass Transfer74, 164-172.‏ https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.010
Tahiri, A., Ragueb, H., Moussaoui, M., Mansouri, K., Guerraiche, D., & Guerraiche, K. (2024). Heat transfer and entropy generation in viscous-joule heating MHD microchannels flow under asymmetric heating. International Journal of Numerical Methods for Heat & Fluid Flow34(10), 3953-3978.‏ https://doi.org/10.1108/HFF-05-2024-0380
Tang, B., Zhou, R., Bai, P., Fu, T., Lu, L., & Zhou, G. (2017). Heat transfer performance of a novel double-layer mini-channel heat sink. Heat and Mass Transfer53, 929-936.‏ https://doi.org/10.1007/s00231-016-1869-3
Tariq, H. A., Anwar, M., & Malik, A. (2020). Numerical investigations of mini-channel heat sink for microprocessor cooling: Effect of slab thickness. Arabian Journal for Science and Engineering45(7), 5169-5177.‏ https://doi.org/10.1007/s13369-020-04370-4
Tariq, H. A., Shoukat, A. A., Hassan, M., & Anwar, M. (2019). Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids. Journal of Thermal Analysis and Calorimetry136, 2171-2182.‏ https://doi.org/10.1007/s10973-018-7852-0
Waseem, M., Algehyne, E. A., Al-Atawi, N. O., Bognár, G., Jawad, M., & Naeem, S. (2024a). Non-similar analysis of suction/injection and Cattaneo-Christov model in 3D viscoelastic non-Newtonian fluids flow due to Riga plate: a biological applications. Alexandria Engineering Journal103, 121-136.‏ https://doi.org/10.1016/j.aej.2024.05.099
Waseem, M., Jawad, M., Naeem, S., & Majeed, A. (2024b). Impact of motile microorganisms and chemical reaction on viscoelastic flow of non-Newtonian fluid with thermal radiation subjected to exponentially stretching sheet amalgamated in Darcy-Forchheimer porous medium. BioNanoScience14(2), 1601-1612.‏ https://doi.org/10.1007/s12668-024-01435-8
Waseem, M., Jawad, M., Naeem, S., Bognár, G., Alballa, T., Khalifa, H. A. E. W., ... & Kolsi, L. (2024c). Regression analysis of Cattaneo–Christov heat and thermal radiation on 3D Darcy flow of Non-Newtonian fluids induced by stretchable sheet. Case Studies in Thermal Engineering61, 104959.‏ https://doi.org/10.1016/j.csite.2024.104959
Zhang, J., Diao, Y., Zhao, Y., & Zhang, Y. (2017). An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques. Experimental Thermal and Fluid Science81, 21-32.‏ https://doi.org/10.1016/j.expthermflusci.2016.10.001