Abdollahi, A., Mohammed, H. A., Vanaki, S. M., Osia, A., & Haghighi, M. G. (2017). Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement.
Alexandria Engineering Journal,
56(1), 161-170.
https://doi.org/10.1016/j.aej.2016.09.019
Abdulqadur, A. A., Jaffal, H. M., & Khudhur, D. S. (2019). Performance optimiation of a cylindrical mini-channel heat sink using hybrid straight–wavy channel.
International Journal of Thermal Sciences,
146, 106111.
https://doi.org/10.1016/j.ijthermalsci.2019.106111
Al-Mohsen, S. A. A., Abed, I. M., & Ali, F. H. (2021). A numerical comparison of circular and corrugation heat sink for laminar CuO–water nano-fluid flow and heat transfer enhancement.
Applied Nanoscience, 1-28.
https://doi.org/10.1007/s13204-021-02003-2
Azizi, Z., Alamdari, A., & Malayeri, M. R. (2015). Convective heat transfer of Cu–water nanofluid in a cylindrical microchannel heat sink.
Energy Conversion and Management,
101, 515-524.
https://doi.org/10.1016/j.enconman.2015.05.073
Falahat, A., Bahoosh, R., Noghrehabadi, A., & Rashidi, M. M. (2019). Experimental study of heat transfer enhancement in a novel cylindrical heat sink with helical minichannels.
Applied Thermal Engineering,
154, 585-592.
https://doi.org/10.1016/j.applthermaleng.2019.03.120
Farade, R. A., Wahab, N. I. B. A., Mansour, D. E. A., Junaidi, N., Soudagar, M. E. M., Rajamony, R. K., & AlZubaidi, A. (2024). A review on ultrasonic alchemy of oil-based nanofluids for cutting-edge dielectric and heat transfer oils.
Journal of Molecular Liquids, 125312.
https://doi.org/10.1016/j.molliq.2024.125312
Farsad, E., Abbasi, S. P., Zabihi, M. S., & Sabbaghzadeh, J. (2011). Numerical simulation of heat transfer in a micro channel heat sinks using nanofluids.
Heat and Mass Transfer,
47(4), 479-490.
https://doi.org/10.1007/s00231-010-0735-y
Fazeli, S. A., Hashemi, S. M. H., Zirakzadeh, H., & Ashjaee, M. (2012). Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid.
Superlattices and Microstructures,
51(2), 247-264.
https://doi.org/10.1016/j.spmi.2011.11.017
Feng, Z., Luo, X., Guo, F., Li, H., & Zhang, J. (2017). Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts.
Applied Thermal Engineering,
116, 597-609.
https://doi.org/10.1016/j.applthermaleng.2017.01.091
Ghani, I. A., Kamaruzaman, N., & Sidik, N. A. C. (2017). Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs.
International Journal of Heat and Mass Transfer,
108, 1969-1981.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.046
Ghasemi, S. E., Ranjbar, A. A., & Hosseini, M. J. (2017). Numerical study on effect of CuO-water nanofluid on cooling performance of two different cross-sectional heat sinks.
Advanced Powder Technology,
28(6), 1495-1504.
https://doi.org/10.1016/j.apt.2017.03.019
Gunnasegaran, P., Mohammed, H. A., Shuaib, N. H., & Saidur, R. (2010). The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes.
International Communications in Heat and Mass Transfer,
37(8), 1078-1086.
https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014
Hadavand, M., Yousefzadeh, S., Akbari, O. A., Pourfattah, F., Nguyen, H. M., & Asadi, A. (2019). A numerical investigation on the effects of mixed convection of Ag-water nanofluid inside a sim-circular lid-driven cavity on the temperature of an electronic silicon chip.
Applied Thermal Engineering,
162, 114298.
https://doi.org/10.1016/j.applthermaleng.2019.114298
Najafabadi, H., & Moraveji, K. (2016). Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach.
Iranian Journal of Chemical Engineering (IJChE),
13(4), 46-61.
https://doi.org/20.1001.1.17355397.2016.13.4.4.3
Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems.
Industrial & Engineering chemistry fundamentals,
1(3), 187-191.
https://doi.org/10.1021/i160003a005
Heidarshenas, A., Azizi, Z., Peyghambarzadeh, S. M., & Sayyahi, S. (2020). Experimental investigation of the particle size effect on heat transfer coefficient of Al 2 O 3 nanofluid in a cylindrical microchannel heat sink.
Journal of Thermal Analysis and Calorimetry,
141, 957-967.
https://doi.org/10.1007/s10973-019-09033-7
Jawad, M., Khalifa, H. A. E. W., Shaaban, A. A., Akgül, A., Riaz, M. B., & Sadiq, N. (2024a). Characteristics of heat transportation in MHD flow of chemical reactive micropolar nanofluid with moving slip conditions across stagnation points.
Results in Engineering,
21, 101954.
https://doi.org/10.1016/j.rineng.2024.101954
Jawad, M., Sadiq, N., & Ali, M. R. (2024b). Analysis of chemical reactive tangent hyperbolic nanofluid flow with joule heating and motile microorganisms through stretchable surface.
Bio Nano Science,
14(2), 605-618.
https://doi.org/10.1007/s12668-023-01268-x
Khoshvaght-Aliabadi, M., Hassani, S. M., & Mazloumi, S. H. (2017). Enhancement of laminar forced convection cooling in wavy heat sink with rectangular ribs and Al2O3/water nanofluids.
Experimental Thermal and Fluid Science,
89, 199-210.
https://doi.org/10.1016/j.expthermflusci.2017.08.017
Kline, S. J. (1963). Describing uncertainties in single-sample experiments. Mech. Eng., 75, 3-8.
Kulandaivel, S., Ngui, W. K., Samykano, M., Rajamony, R. K., Suraparaju, S. K., Abd Ghafar, N. S., & Mat Noor, M. (2024a). Enhanced heat transfer efficiency through formulation and rheo‐thermal analysis of palm oil‐based CNP/SiO2 binary nanofluid.
Energy Technology,
2400314.
https://doi.org/10.1002/ente.202400314
Kulandaivel, S., Samykano, M., Keng, N. W., Rajamony, R. K., Suraparaju, S. K., Sofiah, A. G. N., & Kalidasan, B. (2024b). Nanotechnology Revolutionizing Heat Transfer: A Review of Nanofluid Research and Applications.
Malaysian Journal of Chemistry, 26(3), 192-210.
https://doi.org/10.55373/mjchem.v26i.192
Kumar, P. M., & Kumar, C. A. (2020). Numerical study on heat transfer performance using Al2O3/water nanofluids in six circular channel heat sink for electronic chip.
Materials Today: Proceedings,
21, 194-201.
https://doi.org/10.1016/j.matpr.2019.04.220.
Moghanlou, F. S., Noorzadeh, S., Ataei, M., Vajdi, M., Asl, M. S., & Esmaeilzadeh, E. (2020). Experimental investigation of heat transfer and pressure drop in a minichannel heat sink using Al2O3 and TiO2–water nanofluids.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
42(6), 315.
https://doi.org/10.1007/s40430-020-02403-5
Muhammad, N. M. A., Sidik, N. A. C., Saat, A., & Abdullahi, B. (2019). Effect of nanofluids on heat transfer and pressure drop characteristics of diverging-converging minichannel heat sink. CFD Letters, 11(4), 105-120.
Naranjani, B., Roohi, E., & Ebrahimi, A. (2021). Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofluids.
Journal of Thermal Analysis and Calorimetry,
146, 2549-2560.
https://doi.org/10.1007/s10973-020-10225-9
Ragueb, H., & Mansouri, K. (2023). Exact solution of the Graetz–Brinkman problem extended to non-Newtonian nanofluids flow in elliptical microchannels.
Journal of Engineering Mathematics,
140(1), 10.
https://doi.org/10.1007/s10665-023-10267-6
Ragueb, H., Tahiri, A., Behnous, D., Manser, B., Rachedi, K., & Mansouri, K. (2023). Irreversibilities and heat transfer in magnetohydrodynamic microchannel flow under differential heating.
International Communications in Heat and Mass Transfer,
149, 107155.
https://doi.org/10.1016/j.icheatmasstransfer.2023.107155
Ramasekhar, G., & Jawad, M. (2024). Characteristics of MWCNT, SWCNT, Cu and water based on magnetized flow of nanofluid with Soret and Dufour effects induced by moving wedge: Consequence of Falkner–Skan power law.
Numerical Heat Transfer, Part A: Applications, 1-15.
https://doi.org/10.1080/10407782.2024.2341270
Ramasekhar, G., Divya, A., Jakeer, S., Reddy, S. R. R., Algehyne, E. A., Jawad, M., ... & Hassani, M. K. (2024). Heat transfer innovation of engine oil conveying SWCNTs-MWCNTs-TiO2 nanoparticles embedded in a porous stretching cylinder.
Scientific Reports,
14(1), 16448.
https://doi.org/10.1038/s41598-024-65740-8
Saadoon, Z. H., Ali, F. H., & Sheikholeslami, M. (2023). Numerical investigation of heat transfer enhancement using (Fe3O4 and Ag-H2O) nanofluids in (converge-diverge) mini-channel heat sinks.
Materials Today: Proceedings,
80, 2983-2996.
https://doi.org/10.1016/j.matpr.2021.07.091
Saadoon, Z. H., Ali, F. H., Hamzah, H. K., Abed, A. M., & Hatami, M. (2022). Improving the performance of mini-channel heat sink by using wavy channel and different types of nanofluids.
Scientific Reports,
12(1), 9402.
https://doi.org/10.1038/s41598-022-13519-0
Sadiq, N., Jawad, M., Khalid, F., Jahan, S., & Hassan, A. M. (2024). Comparative analysis of non-Newtonian and Newtonian fluid flow with dual slip in the presence of motile microorganisms and nanoparticles.
BioNanoScience,
14(2), 1504-1519.
https://doi.org/10.1007/s12668-023-01284-x
Sajid, M. U., Ali, H. M., Sufyan, A., Rashid, D., Zahid, S. U., & Rehman, W. U. (2019). Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks.
Journal of Thermal Analysis and Calorimetry,
137(4), 1279-1294.
https://doi.org/10.1007/s10973-019-08043-9
Sivakumar, A., Alagumurthi, N., & Senthilvelan, T. (2016). Experimental investigation of forced convective heat transfer performance in nanofluids of Al 2 O 3/water and CuO/water in a serpentine shaped micro channel heat sink.
Heat and Mass Transfer,
52, 1265-1274.
https://doi.org/10.1007/s00231-015-1649-5
Sohel, M. R., Khaleduzzaman, S. S., Saidur, R., Hepbasli, A., Sabri, M. F. M., & Mahbubul, I. M. (2014). An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid.
International Journal of Heat and Mass Transfer,
74, 164-172.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.010
Tahiri, A., Ragueb, H., Moussaoui, M., Mansouri, K., Guerraiche, D., & Guerraiche, K. (2024). Heat transfer and entropy generation in viscous-joule heating MHD microchannels flow under asymmetric heating.
International Journal of Numerical Methods for Heat & Fluid Flow,
34(10), 3953-3978.
https://doi.org/10.1108/HFF-05-2024-0380
Tang, B., Zhou, R., Bai, P., Fu, T., Lu, L., & Zhou, G. (2017). Heat transfer performance of a novel double-layer mini-channel heat sink.
Heat and Mass Transfer,
53, 929-936.
https://doi.org/10.1007/s00231-016-1869-3
Tariq, H. A., Anwar, M., & Malik, A. (2020). Numerical investigations of mini-channel heat sink for microprocessor cooling: Effect of slab thickness.
Arabian Journal for Science and Engineering,
45(7), 5169-5177.
https://doi.org/10.1007/s13369-020-04370-4
Tariq, H. A., Shoukat, A. A., Hassan, M., & Anwar, M. (2019). Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids.
Journal of Thermal Analysis and Calorimetry,
136, 2171-2182.
https://doi.org/10.1007/s10973-018-7852-0
Waseem, M., Algehyne, E. A., Al-Atawi, N. O., Bognár, G., Jawad, M., & Naeem, S. (2024a). Non-similar analysis of suction/injection and Cattaneo-Christov model in 3D viscoelastic non-Newtonian fluids flow due to Riga plate: a biological applications.
Alexandria Engineering Journal,
103, 121-136.
https://doi.org/10.1016/j.aej.2024.05.099
Waseem, M., Jawad, M., Naeem, S., & Majeed, A. (2024b). Impact of motile microorganisms and chemical reaction on viscoelastic flow of non-Newtonian fluid with thermal radiation subjected to exponentially stretching sheet amalgamated in Darcy-Forchheimer porous medium.
BioNanoScience,
14(2), 1601-1612.
https://doi.org/10.1007/s12668-024-01435-8
Waseem, M., Jawad, M., Naeem, S., Bognár, G., Alballa, T., Khalifa, H. A. E. W., ... & Kolsi, L. (2024c). Regression analysis of Cattaneo–Christov heat and thermal radiation on 3D Darcy flow of Non-Newtonian fluids induced by stretchable sheet.
Case Studies in Thermal Engineering,
61, 104959.
https://doi.org/10.1016/j.csite.2024.104959
Zhang, J., Diao, Y., Zhao, Y., & Zhang, Y. (2017). An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques.
Experimental Thermal and Fluid Science,
81, 21-32.
https://doi.org/10.1016/j.expthermflusci.2016.10.001