Arabjamaloei, R., Edalatkhah, S., & Jamshidi, E. (2011). A new approach to well trajectory optimization based on rate of penetration and wellbore stability.
Petroleum Science and Technology,
29(6), 588–600.
https://doi.org/10.1080/10916460903419172
Bukhari, S. S., Abed, R., Holagh, S. G., & Ahmed, W. H. (2024). Flow pattern dependent model for airlift pumps performance: Analytical simulation and experimental verification.
Chemical Engineering Research and Design,
201, 67–81.
https://doi.org/10.1016/J.CHERD.2023.11.033
Cho, N. C., Hwang, I. J., Lee, C. M., & Park, J. W. (2009). An experimental study on the airlift pump with air jet nozzle and booster pump.
Journal of Environmental Sciences,
21, S19–S23.
https://doi.org/10.1016/S1001-0742(09)60028-0
Elbanna, A. M. (2016). A simple control model for the mud pump in drilling fluid systems of directional Drilling. Alexandria University.
Enany, P., & Drebenshtedt, C. (2024). Performance characteristics of the airlift pump under vertical solid–water–gas flow conditions for conveying centimetric-sized coal particles.
International Journal of Coal Science and Technology,
11(1), 1–14.
https://doi.org/10.1007/S40789-024-00668-Y/FIGURES/7
Fadlalla, D., Rosettani, J., Holagh, S. G., & Ahmed, W. H. (2023). Airlift pumps characteristics for shear-thinning non-Newtonian fluids: An experimental investigation on liquid viscosity impact.
Experimental Thermal and Fluid Science,
149, 110994.
https://doi.org/10.1016/J.EXPTHERMFLUSCI.2023.110994
Fan, W., Chen, J., Pan, Y., Huang, H., Arthur Chen, C.-T., & Chen, Y. (2013). Experimental study on the performance of an air-lift pump for artificial upwelling.
Ocean Engineering,
59, 47–57.
https://doi.org/10.1016/j.oceaneng.2012.11.014
Fan, W., Zhang, Z., Yao, Z., Xiao, C., Zhang, Y., Zhang, Y., Liu, J., Di, Y., Chen, Y., & Pan, Y. (2020). A sea trial of enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling.
Applied Ocean Research,
101, 102260.
https://doi.org/10.1016/j.apor.2020.102260
Fujimoto, H., Murakami, S., Omura, A., & Takuda, H. (2004). Effect of local pipe bends on pump performance of a small air-lift system in transporting solid particles.
International Journal of Heat and Fluid Flow,
25(6), 996–1005.
https://doi.org/10.1016/j.ijheatfluidflow.2004.02.025
Hanafizadeh, P., Saidi, M. H., Karimi, A., & Zamiri, A. (2010). Effect of bubble size and angle of tapering upriser pipe on the performance of airlift pumps.
Particulate Science and Technology,
28(4), 332–347.
https://doi.org/10.1080/02726351.2010.496300
Holagh, S. G., & Ahmed, W. H. (2024). Critical review of vertical gas-liquid slug flow: An insight to better understand flow hydrodynamics’ effect on heat and mass transfer characteristics.
International Journal of Heat and Mass Transfer,
225, 125422.
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2024.125422
Hu, D., Tang, C. L., Cai, S. P., & Zhang, F. H. (2012). The Effect of air injection method on the airlift pump performance.
Journal of Fluids Engineering,
134(11).
https://doi.org/10.1115/1.4007592
Kassab, S. Z., Abdelrazek, A. A., & Lotfy, E. R. (2022). Effects of injection mechanism on air-water air lift pump performance.
Alexandria Engineering Journal,
61(10), 7541–7553.
https://doi.org/10.1016/j.aej.2022.01.002
Kumar, D., Amudha, K., Gopakumar, K., & Ramadass, G. A. (2024). Air-lift pump systems for vertical solid particle transport: A comprehensive review and deep sea mining potential.
Ocean Engineering,
297, 116928.
https://doi.org/10.1016/J.OCEANENG.2024.116928
Nicklin, D. (1963). The air-lift pump: theory and optimisation. Transactions of the Institution of Chemical Engineers, 41, 29–39.
Qiang, Y., Fan, W., Xiao, C., Pan, Y., & Chen, Y. (2018). Effects of operating parameters and injection method on the performance of an artificial upwelling by using airlift pump.
Applied Ocean Research,
78, 212–222.
https://doi.org/10.1016/j.apor.2018.06.006
Tighzert, H., Brahimi, M., Kechroud, N., & Benabbas, F. (2013). Effect of submergence ratio on the liquid phase velocity, efficiency and void fraction in an air-lift pump.
Journal of Petroleum Science and Engineering,
110, 155–161.
https://doi.org/10.1016/J.PETROL.2013.08.047