Abdollahi, A., Kabiri-Samani, A., Asghari, K., Atoof, H., & Bagheri, S. (2017). Numerical modeling of flow field around the labyrinth side-weirs in the presence of guide vanes.
ISH Journal of Hydraulic Engineering,
23(1), 71-79.
https://doi.org/10.1080/09715010.2016.1239555
Aminvash, E., & Roushangar, K. (2023). Numerical investigation of the effect of the frontal slope of simple and blocky stepped spillway with semi-circular crest on its hydraulic parameters. Iranian Journal of Irrigation & Drainage, 17(1), 102-116.
Aminvash, E., Kalateh, F., Daneshfaraz, R., & Abraham, J. (2024). Investigation of the performance of soft computing methods in the hydraulic evaluation of the slot fishway on the inclined drop.
Journal of Hydraulic Structures,
10(1), 46-65.
https://doi.org/10.22055/jhs.2024.45673.1278
Bagherzadeh, M., Mousavi, F., Manafpour, M., Mirzaee, R., & Hoseini, K. (2022). Numerical simulation and application of soft computing in estimating vertical drop energy dissipation with horizontal serrated edge.
Water Supply, 22(4), 4676-4689.
https://doi.org/10.2166/ws.2022.127
Daneshfaraz, R., & Ghaderi, A. (2017). Numerical investigation of inverse curvature ogee spillway.
Civil Engineering Journal (C.E.J),
3(11), 1146-1156.
https://doi.org/10.28991/cej-030944
Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S., & Abraham, J. (2020). Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions.
Journal of Groundwater Science and Engineering,
8(4), 396-406.
https://doi.org/10.19637/j.cnki.2305-7068.2020.04.009
Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., & Bagherzadeh, M. (2021a). SVM performance for predicting the effect of horizontal screen diameters on the hydraulic parameters of a vertical drop.
Applied Sciences,
11(9), 4238.
https://doi.org/10.3390/app11094238
Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., & Abraham, J. (2021b). Three-dimensional investigation of hydraulic properties of vertical drop in the presence of step and grid dissipators.
Symmetry,
13(5), 895.
https://doi.org/10.3390/sym13050895
De Marchi, G. (1934). “Saggio di teoria sul funzionamento degli stramazzi laterali.” L’ Energia Elettrica, 11, Milano, Italy, 849–854 (in Italian).
Ghaderi, A., Dasineh, M., Abbasi, S., & Abraham, J. (2020). Investigation of trapezoidal sharp-crested side weir discharge coefficients under subcritical flow regimes using CFD.
Applied Water Science,
10(1), 1-12.
https://doi.org/10.1007/s13201-019-1112-8
Hager, W. H. (1987). Lateral outflow over side weirs. Journal of Hydraulic Engineering, 113(4), 491-504.
Henderson F. M. (1966). Open channel flow, Macmillan., New York.
Hyung, P. M., & Sop, R. D. (2010) Development of discharge formula for broad crested side weir. J Korea Water Resour Assoc, 43(6). 525–531.
Jalili Ghazizadeh, M., Fallahi, H., & Jabbari, E. (2021). Characteristics of water surface profile over rectangular side weir for supercritical flows.
Journal of Irrigation and Drainage Engineering,
147(5), 04021011.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001551
Kalateh, F., & Aminvash, E. (2023). Numerical simulation of the effect of channel bed slope on the hydraulic performance of sharp-crested rectangular side weir with subcritical and supercritical regimes.
Iranian Journal of Soil and Water Research,
54(1), 67-84.
https://doi.org/10.22059/ijswr.2023.354381.669440
Kalateh, F., & Aminvash, E. (2025). Numerical investigation of aerator position effects on two-phase flow and hydraulic efficiency in morning glory spillway.
Innovative Infrastructure Solutions,
10(1), 10.
https://doi.org/10.1007/s41062-024-01812-y
Kalateh, F., Aminvash, E., & Abraham, J. (2024a). On the effect of flow regime and slope of the channel bed on the hydraulic performance of the sharp-crested rectangular side weir: a numerical simulation.
European Journal of Environmental and Civil Engineering,
28(10), 2327-2344.
https://doi.org/10.1080/19648189.2024.2314112
Kalateh, F., Aminvash, E., & Daneshfaraz, R. (2024b). On the hydraulic performance of the inclined drops: the effect of downstream macro-roughness elements.
AQUA—Water Infrastructure, Ecosystems and Society, 73(3), 553-568.
https://doi.org/10.2166/aqua.2024.304
Mirkhorli, P., Bagherzadeh, M., Mohammadnezhad, H., Ghaderi, A., & Kisi, O. (2025). Energy dissipation prediction for trapezoidal–triangular labyrinth weirs based on soft computing techniques: a comparison.
ACS ES&T Water,
5(3), 1453-1468.
https://doi.org/10.1021/acsestwater.4c01055
Nistoran, D. E. G., Simionescu, Ş. M., Cîrciumaru, G., & Chihaia, R. A. (2023). Numerical simulations of flow over a side weir for diversion structures and water intakes. IOP Conference Series: Earth and Environmental Science. IOP Publishing.
Seyedjavad, M., Naeeni, S. T. O., & Saneie, M. (2019). Laboratory investigation on discharge coefficient of trapezoidal piano key side weirs.
Civil Engineering Journal, 5(6), 1327-40.
https://doi.org/10.28991/cej-2019-03091335
Simsek, O., Akoz, M. S., & Soydan, N. G. (2016). Numerical validation of open channel flow over a curvilinear broad-crested weir.
Progress in Computational Fluid Dynamics, an International Journal,
16(6), 364-378.
https://doi.org/10.1504/PCFD.2016.10000916