Brackbill, J., Liou, W.W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-epsilon eddy viscosity model for high Reynolds number turbulent Flows - model development and validation. Computers and Fluids, 24, 227–238.
Celata, G. P., Cumo, M., Dossevi, D., Jilisen, R. T. M., Saha, S. K., & Zummo, G. (2011). Visualisation of flow boiling heat transfer in a microtube.
Heat Mass Transfer,
47, 941–949.
https://doi.org/10.1007/s00231-011-0846-0
Chen, J. C. (1966). Correlation for boiling heat transfers to saturated fluids in convective flow.
Industrial & Engineering Chemistry Process Design and development,
5, 322-329.
https://doi.org/10.1021/i260019a023
Collier, G. J., & Thome, J. R. (1994). Convective boiling and condensation. Clarendon Press, Oxford.
De Schepper, S. C. K., Heynderickx, G. J., & Marin, G. B. (2008). CFD modeling of all gas–liquid and vapor–liquid flow regimes predicted by the Baker chart.
Chemical Engineering Journal,
138, 349–357.
https://doi.org/10.1016/j.cej.2007.06.007
Etminan, A., Muzychka, Y. S., & Pope, K. (2021). Numerical investigation of gas-liquid and liquid-liquid Taylor flow through a circular microchannel with a sudden expansion.
The Canadian Journal of Chemical Engineering,
100(7), 1596-1612.
https://doi.org/10.1002/cjce.24229
Etminan, A., Muzychka, Y. S., & Pope, K. (2022). Liquid film thickness of two-phase slug flows in capillary microchannels: a review paper.
The Canadian Journal of Chemical Engineering,
100(2), 325-348.
https://doi.org/10.1002/cjce.24068
Etminan, A., Muzychka, Y. S., & Pope, K. (2023). Experimental and numerical analysis of heat transfer and flow phenomena in Taylor flow through a straight mini-channel.
Journal of Heat and Mass Transfer,
145(8), 081801.
https://doi.org/10.1115/1.4062175
Hassani, M., & Kouhikamali, R. (2020). Heat and mass modeling of R-245fa and R1233zd(E) with concurrent boiling and convective evaporation in falling film applications.
International Journal of Refrigeration,
117, 181-189.
https://doi.org/10.1016/j.ijrefrig.2020.05.002
Hassani, M., Bagheri Motlagh, M., & Kouhikamali, R. (2020). Numerical investigation of upward air-water annular, slug and bubbly flow regimes. Journal of Computational and Applied Research in Mechanical Engineering, 9(2), 331-341. https://10.22061/jcarme.2019.3893.1453
Jaeger, J., Santos, C. M., Rosa, L. M., Meier, H. F., & Noriler, D. (2018). Experimental and numerical evolution of slugs in a vertical air-water flow.
Internatiol Journal of Multiphase Flow,
101, 152-166.
https://doi.org/10.1016/j.ijmultiphaseflow.2018.01.009
Kouhikamali, R. (2010). Numerical simulation and parametric study of forced convective condensation in cylindrical vertical channels in multiple effect desalination systems.
Desalination,
254, 49–57.
https://doi.org/10.1016/j.desal.2009.12.015
Krepper, E., Koncar, B., & Egorov, Y. (2007). CFD modelling of subcooled boiling—concept, validation and application to fuel assembly design.
Nuclear Engineering and Design,
237, 716-731.
https://doi.org/10.1016/j.nucengdes.2006.10.023
Lagus, T. P., & Kulacki, F. A. (2012). Two-phase heat transfer and bubble characteristics in a microchannel array.
Journal of Heat Transfer-Transactions of the ASME,
134 (7).
https://doi.org/10.1115/1.4006097
Li, H., Vasquez, S. A., Punekar, H., & Muralikrishnan, R. (2011
). Prediction of boiling and critical heat flux using an eulerian multiphase boiling model. ASME, Denver, Colorado: International Mechanical Engineering Congress & Exposition, 463-476.
https://doi.org/10.1115/IMECE2011-65539
Ling, T., Wang, T., Lei, G., Fang, Z., Zhao, L., & Xu, C. (2021). Experimental study on slug flow characteristics and its suppression by microbubbles in gas-liquid mixture pipeline.
Journal of Applied Fluid Mechanics,
14(2), 567-579.
10.47176/jafm.14.02.31482
Magnini, M., & Thome, J. R. (2016). Computational study of saturated flow boiling within a microchannel in the slug flow regime.
Journal of Heat Transfer-Transactions of the ASME,
138 (2).
https://doi.org/10.1115/1.4031234
Magnini, M., Pulvirenti, B., & Thome, J. R. (2013). Numerical investigation of influence of leading and sequential bubbles on slug flow boiling within a microchannel.
International Journal of Thermal Sciences,
71, 36-52.
https://doi.org/10.1016/j.ijthermalsci.2013.04.018
Medina, C. D., Bassani, C. L., Cozin, C., Barbuto, F. A. A., Juqueira, S. L. M., & Morales, R. E. (2015). Numerical simulatio of the heat transfer in fully developed horizontal two-phase slug flows using a slug tracking method.
Internatioal Journal of Thermal Sciences, 88, 258-266.
https://doi.org/10.1016/j.ijthermalsci.2014.05.007
Mehdipour, R., Baniamerian, Z., & Delauré, Y. (2016). Three dimensional simulation of nucleate boiling heat and mass transfer in cooling passages of internal combustion engines. Heat Mass Transfer, 52, 957–968. https://doi.org/10.1007/s00231-015-1611-6
Mehdizadeh Momen, A., Sherif, S. A., & Lear, W. E. (2016). An analytical-numerical model for two-phase slug flow through a sudden area change in microchannels.
Journal of Applied Fluid Mechanics,
9(4), 1839-1850.
10.18869/acadpub.jafm.68.235.24576
Montenegro, G., D’Errico, G., Della Torre, A., Cadei, L., & Masi, S. (2016). Slug catcher multiphase CFD modeling: optimization and comparison with industrial standards.
Journal of Applied Fluid Mechanics,
9(1), 1-9.
10.36884/jafm.9.SI1.25816
Schmelter, S., Olbrich, M., Schmeyer, E., & Bär, M. (2020) Numerical simulation, validation, and analysis of two-phase slug flow in large horizontal pipes.
Flow Measurment and Instrumentation,
73, 101722.
https://doi.org/10.1016/j.flowmeasinst.2020.101722
Shah, M. M. (1976). A new correlation for heat transfer during boiling flow through pipes. ASHRAE Transactions, 82, 66-86.
Shah, M. M. (1982). Chart correlation for saturated boiling heat transfer: equations and further study. Ashrae Trans, 88, 185-196.
Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-epsilon eddy viscosity model for high Reynolds number turbulent Flows - model development and validation.
Computers and Fluids,
24, 227–238.
https://doi.org/10.1016/0045-7930(94)00032-T
Shin, H. C., Senguttuvan, S., & Kim, S. M. (2023). Experimental study on sub-regimes of air-water slug flow in a rectangular micro-channel.
International Journal of Mechanical Sciences,
259, 108577.
https://doi.org/10.1016/j.ijmecsci.2023.108577
Simões, E. F., Carneiro, J. N. E., & Nieckele, A. O. (2014). Numerical prediction of non-boiling heat transfer in horizontal stratified and slug flow by the Two-Fluid Model.
International Journal of Heat and Fluid Flow,
47, 135-145.
https://doi.org/10.1016/j.ijheatfluidflow.2014.03.005
Wang, T., Gui, M., Zhang, T., Bi, Q., Zhao, J., & Liu, Z. (2021). Experimental investigation on characteristics parameters of air-water slug flow in a vertical tube.
Chemical Engineering Science,
246, 116895.
https://doi.org/10.1016/j.ces.2021.116895