Numerical Investigation on the Aerodynamic Performance of Vertical Axis Wind Turbine with the Half-airfoil Wind Collector

Document Type : Regular Article

Authors

1 School of Energy and Power Engineering, University of Shanghai for Science and Technology 1, Shanghai, 200093, China

2 Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering 2, Shanghai, 200093, China

10.47176/jafm.18.10.3352

Abstract

In an effort to boost the aerodynamic performance of vertical axis wind turbines (VAWT), a half-airfoil wind collector structure is proposed, inspired by the contour shape of NACA airfoils. To explore the influence of the half-airfoil wind collector on the performance of VAWTs, an optimization design of the half-airfoil wind collector structure is conducted using the Design of Experiments (DOE) method. Based on the NACA0021 airfoil, simulations of computational fluid dynamics (CFD) are used to examine the instantaneous torque, power coefficient, overall torque, and dynamic flow field of the VAWT blades under the influence of the half-airfoil wind collector. The findings reveal that the half-airfoil wind collector has a good wind-collecting effect, effectively guiding the airflow to concentrate on the blades, increasing the local airflow velocity over the blades, and strengthening the differential in pressure between the blades' inner and outer surfaces. This results in an increased torque on the blades and lessens losses related to the enlargement and detachment of dynamic stall vortices. Consequently, the power coefficient of the VAWT is augmented within the scope of high tip - speed ratio. Specifically, When the tip-speed ratio is 3.08, with geometric parameters of x = 0, d = 29c, α = 5°, and the NACA0021 contour, the highest power coefficient reaches 0.59, showing an improvement of 55.8% over the standard VAWT. When the tip-speed ratio rises, the half-airfoil wind collector maintains a high power coefficient and torque coefficient, demonstrating that it enables the VAWT to operate more efficiently at higher rotational speeds, thus expanding the operational range.

Keywords

Main Subjects


Abed Zahmatkesh Pasand, S., Karimian Aliabadi, S., Ghaemi Osgouie, S. K., & Moshfeghi, M. (2024). Numerical study of the effect of corona discharge on upward wake flow in the horizontal axis wind turbine farm. Journal of Applied Fluid Mechanics, 18(1), 32-44. https://doi.org/10.47176/jafm.18.1.2547
Aboelezz, A., Ghali, H., Elbayomi, G., & Madboli, M. (2022). A novel VAWT passive flow control numerical and experimental investigations: Guided Vane Airfoil Wind Turbine. Ocean Engineering, 257, 111704. https://doi.org/10.1016/j.oceaneng.2022.111704
Ahnn, S., Kim, H., & Choi, H. (2024). Aerodynamic performance enhancement of a vertical-axis wind turbine by a biomimetic flap. Bioinspiration & Biomimetics. https://doi.org/10.1088/1748-3190/ad9a45
Attie, C., ElCheikh, A., Nader, J., & Elkhoury, M. (2022). Performance enhancement of a vertical axis wind turbine using a slotted deflective flap at the trailing edge. Energy Conversion and Management, 273, 116388. https://doi.org/10.1016/j.enconman.2022.116388
Azadani, L. N., & Saleh, M. (2022). Effect of blade aspect ratio on the performance of a pair of vertical axis wind turbines. Ocean Engineering, 265, 112627. https://doi.org/10.1016/j.oceaneng.2022.112627
Dadamoussa, A., Boualem, K., Yahiaoui, T., & Imine, O. (2020). Numerical investigation of flow on a darrieus vertical axis wind turbine blade with vortex generators. International Journal of Fluid Mechanics Research, 47(1), 43–58. https://doi.org/10.1615/interjfluidmechres.2020026791
Davandeh, N., & Maghrebi, M. J. (2023). Leading edge radius effects on VAWT performance. Journal of Applied Fluid Mechanics, 16(9), 1877-1886. https://doi.org/10.47176/jafm.16.09.1626
Ershuai, Q., Wen, X., & Ying, W. (2022). Analysis on the mechanism of different operating conditions for DBD plasma excitation on Savonius VAWT. Journal of Applied Fluid Mechanics, 16(1). https://doi.org/10.47176/jafm.16.01.1377
Farzadi, R., Zanj, A., & Bazargan, M. (2024). Effect of baffles on efficiency of darrieus vertical axis wind turbines equipped with J-type blades. Energy, 305, 132305. https://doi.org/10.1016/j.energy.2024.132305
Ghafoorian, F., Mirmotahari, S. R., & Wan, H. (2024). Numerical study on aerodynamic performance improvement and efficiency enhancement of the savonius vertical axis wind turbine with semi-directional airfoil guide vane. Ocean Engineering, 307, 118186. https://doi.org/10.1016/j.oceaneng.2024.118186
Gupta, A., Abderrahmane, H. A., & Janajreh, I. (2024). Flow analysis and sensitivity study of vertical-axis wind turbine under variable pitching. Applied Energy, 358, 122648. https://doi.org/10.1016/j.apenergy.2024.122648
Han, Z., Chen, H., Chen, Y., Su, J., Zhou, D., Zhu, H., Xia, T., & Tu, J. (2023). Aerodynamic performance optimization of vertical axis wind turbine with straight blades based on synergic control of pitch and flap. Sustainable Energy Technologies and Assessments, 57, 103250. https://doi.org/10.1016/j.seta.2023.103250
Ivanković, M., Manolesos, M., Jentzsch, M., Kozmar, H., & Nayeri, C. N. (2024). Dynamic stall of vertical-axis-wind-turbine rotor blades equipped with Gurney flaps and vortex generators. Journal of Physics Conference Series, 2767(7), 072023. https://doi.org/10.1088/1742-6596/2767/7/072023
Joseph, J., Sridhar, S., A, S., & Radhakrishnan, J. (2024). Analyzing dynamic stall on tubercle mounted VAWT blades: A simplistic experimental approach using an oscillating rig. Sustainable Energy Technologies and Assessments, 71, 103962. https://doi.org/10.1016/j.seta.2024.103962
Ramesh, K, K., & Selvaraj, M. (2023). Investigations on integrated funnel, fan and diffuser augmented unique wind turbine to enhance the wind speed. Journal of Applied Fluid Mechanics, 16(3). https://doi.org/10.47176/jafm.16.03.1498
Karimian, S., & Rasekh, S. (2021). Power and noise performance assessment of a variable pitch vertical axis darrieus type wind turbine. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(9). https://doi.org/10.1007/s40430-021-03103-4
Kuang, L., Su, J., Chen, Y., Han, Z., Zhou, D., Zhang, K., Zhao, Y., & Bao, Y. (2021). Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system. Energy, 239, 122196. https://doi.org/10.1016/j.energy.2021.122196
Lee, K., Cruden, A., Ng, J., & Wong, K. (2024). Variable designs of vertical axis wind turbines—a review. Frontiers in Energy Research, 12. https://doi.org/10.3389/fenrg.2024.1437800
Li, Y., Tong, G., Ma, Y., Feng, F., & Tagawa, K. (2023). Numerical study on aerodynamic performance improvement of the straight-bladed vertical axis wind turbine by using wind concentrators. Renewable Energy, 219, 119545. https://doi.org/10.1016/j.renene.2023.119545
Li, Y., Zhao, S., Qu, C., Tong, G., Feng, F., Zhao, B., & Kotaro, T. (2019). Aerodynamic characteristics of Straight-bladed Vertical Axis Wind Turbine with a curved-outline wind gathering device. Energy Conversion and Management, 203, 112249. https://doi.org/10.1016/j.enconman.2019.112249
Liu, Q., Miao, W., Bashir, M., Xu, Z., Yu, N., Luo, S., & Li, C. (2022a). Aerodynamic and aeroacoustic performance assessment of a vertical axis wind turbine by synergistic effect of blowing and suction. Energy Conversion and Management, 271, 116289. https://doi.org/10.1016/j.enconman.2022.116289
Liu, K., Song, B., Xue, D., Yang, W., Chen, A., & Wang, Z. (2022b). Numerical study of the aerodynamic effects of bio-inspired leading-edge serrations on a heaving wing at a low Reynolds number. Aerospace Science and Technology, 124, 107529. https://doi.org/10.1016/j.ast.2022.107529
Maani, R. E., Radi, B., & Hami, A. E. (2024). Numerical study and Optimization-Based sensitivity analysis of a Vertical-Axis wind turbine. Energies, 17(24), 6300. https://doi.org/10.3390/en17246300
Meana-Fernández, A., Oro, J. M. F., Díaz, K. M. A., & Velarde-Suárez, S. (2019). Turbulence-model comparison for aerodynamic-performance prediction of a typical vertical-axis wind-turbine airfoil. Energies, 12(3), 488. https://doi.org/10.3390/en12030488
Płuszka, P., Malecha, Z., Lewandowski, D., & Surma, K. (2022). Numerical investigation of working fluid properties impacting performance of magnetocaloric cooling device. Applied Thermal Engineering, 218, 119305. https://doi.org/10.1016/j.applthermaleng.2022.119305
Rainone, C., De Siero, D., Iuspa, L., Viviani, A., & Pezzella, G. (2023). A numerical procedure for Variable-Pitch law formulation of Vertical-Axis wind turbines. Energies, 16(1), 536. https://doi.org/10.3390/en16010536
Rasekh, S., & Aliabadi, S. K. (2023). Toward improving the performance of a variable pitch vertical axis wind turbine (VP-VAWT), Part 2: Multi-objective optimization using NSGA-II with CFD in the loop. Ocean Engineering, 278, 114308. https://doi.org/10.1016/j.oceaneng.2023.114308
Rasekh, S., Aliabadi, S. K., & Hansen, M. O. (2023). Toward improving the performance of a variable pitch vertical axis wind turbine (VP-VAWT), Part 1: Sensitivity analysis using Taguchi-CFD approach. Ocean Engineering, 279, 114478. https://doi.org/10.1016/j.oceaneng.2023.114478
Silva, L. J., & Wolf, W. R. (2024). Embedded shear layers in turbulent boundary layers of a NACA0012 airfoil at high angles of attack. International Journal of Heat and Fluid Flow, 107, 109353. https://doi.org/10.1016/j.ijheatfluidflow.2024.109353
Song, M., Moaveni, B., & Hines, E. (2024). Hierarchical Bayesian quantification of aerodynamic effects on an offshore wind turbine under varying environmental and operational conditions. Mechanical Systems and Signal Processing, 224, 112174. https://doi.org/10.1016/j.ymssp.2024.112174
Sun, J., & Huang, D. (2023). Impact of trailing edge jet on the performance of a vertical axis wind turbine. Journal of Mechanical Science and Technology, 37(3), 1301–1309. https://doi.org/10.1007/s12206-023-0216-0
Tong, H., & Wang, Y. (2021). Experimental study on unsteady aerodynamic characteristics of deformed blades for vertical axis wind turbine. Renewable Energy, 173, 808–826. https://doi.org/10.1016/j.renene.2021.02.139
Torres, S., Marulanda, A., Montoya, M. F., & Hernandez, C. (2022). Geometric design optimization of a Savonius wind turbine. Energy Conversion and Management, 262, 115679. https://doi.org/10.1016/j.enconman.2022.115679
Xu, Z., Dong, X., Li, K., Zhou, Q., & Zhao, Y. (2024). Study of the Self-starting Performance of a Vertical-axis Wind Turbine. Journal of Applied Fluid Mechanics, 17(6), 1261-1276. https://doi.org/10.47176/jafm.17.6.2295
Zhang, Q., Bashir, M., Miao, W., Liu, Q., Li, C., Yue, M., & Wang, P. (2023). Aerodynamic analysis of a novel pitch control strategy and parameter combination for vertical axis wind turbines. Renewable Energy, 216, 119089. https://doi.org/10.1016/j.renene.2023.119089
Zhang, R. Y., Li, D. Y., Wei, X. T., Chang, H., & Wang, H. J. (2024). Blade Airfoil optimization and its impact on vertical axis wind turbine performance. Journal of Physics Conference Series, 2854(1), 012066. https://doi.org/10.1088/1742-6596/2854/1/012066
Zhou, L., Long, Y., Wang, F., Yang, J., Shou, Z., Jia, Q., Sun, F., & Yang, H. (2024). Simulation analysis of wind collecting device for a vertical axis wind turbine. Journal of Physics Conference Series, 2736(1), 012038. https://doi.org/10.1088/1742-6596/2736/1/012038
Zhu, H., Hao, W., Li, C., Ding, Q., & Wu, B. (2019). Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines. Aerospace Science and Technology, 88, 468–480. https://doi.org/10.1016/j.ast.2019.03.022
Zoghi, M., Gharaie, S., Hosseinzadeh, N., & Zare, A. (2024). 4E analysis and optimization comparison of solar, biomass, geothermal, and wind power systems for green hydrogen-fueled SOFCs. Energy, 313, 133740. https://doi.org/10.1016/j.energy.2024.133740