Abdizadeh, G. R., Farokhinejad, M., & Ghasemloo, S. (2022). Numerical investigation on the aerodynamic efficiency of bio-inspired corrugated and cambered airfoils in ground effect.
Scientific Reports,
12(1), 19117.
https://doi.org/10.1038/s41598-022-23590-2.
Adhikari, D. R., Sargunaraj, M. P., Soto, C. E., Bhattacharya, S., Loubimov, G. E., and Kinzel, M. P.
(2020).
Unsteady ground effects on a rectangular and swept wing undergoing heaving and pitching during deceleration. AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2020-0334.
Barber, T. J., Leonardi, E., & Archer, R. D. (1999). A technical note on the appropriate CFD boundary conditions for the prediction of ground effect aerodynamics.
The Aeronautical Journal,
103(1029), 545–547.
https://doi.org/10.1017/s0001924000064368
Barnes, C. J., & Visbal, M. (2016).
High-fidelity LES simulations of self-sustained pitching oscillations on a NACA0012 airfoil at transitional reynolds numbers’.
54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2016-1353.
Ben-Nasr, O. Laurence, D., and Thormann, A. (2017). Assessment of subgrid-scale modeling for large-eddy simulation of a spatially-evolving compressible turbulent boundary layer.
Computers & Fluids, 151, 144–158.
https://doi.org/10.1016/j.compfluid.2016.07.004
Bertagnolio, F., Sørensen, N. N., & Rasmussen, F. (2005). New insight into the flow around a wind turbine airfoil section1.
Journal of Solar Energy Engineering,
127(2), 214–222.
https://doi.org/10.1115/1.1861927.
Bleischwitz, R., de Kat, R., & Ganapathisubramani, B. (2016). Aeromechanics of membrane and rigid wings in and out of ground-effect at moderate reynolds numbers.
Journal of Fluids and Structures,
62, 318–331.
https://doi.org/10.1016/j.jfluidstructs.2016.02.005.
Bleischwitz, R., de Kat, R., & Ganapathisubramani, B. (2017). On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect.
Journal of Fluids and Structures,
70, 214–234.
https://doi.org/10.1016/j.jfluidstructs.2016.12.001.
Boudis, A., Bayeul-Laine, A. C., Benzaoui, A., Oualli, H., Guerri, O., and Coutier-Delgosha, O.
(2019). Numerical investigation of the effects of nonsinusoidal motion trajectory on the propulsion mechanisms of a flapping airfoil.
Journal of Fluids Engineering,
141(4).
https://doi.org/10.1115/1.4042175.
Bryant, M., Gomez, J. C., & Garcia, E. (2013). Reduced-order aerodynamic modeling of flapping wing energy harvesting at low reynolds number.
AIAA Journal,
51(12), 2771–2782.
https://doi.org/10.2514/1.J052364.
Ito, Y., & Iwashita, H. (2016). Characteristics of unsteady aerodynamics and pressure fields of wings flying with heave motion in the ground effect.
Journal of the Japan Society of Naval Architects and Ocean Engineers,
24, 69–83.
https://doi.org/10.2534/jjasnaoe.24.69
Lehmkuhl, O., Baez, A., Rodríguez, I., & Pérez-Segarra, C. D. (2011). Direct numerical simulation and large-eddy simulations of the turbulent flow around a NACA-0012 Airfoil’. 7th International Conference on Computational Heat and Mass Transfer. Istanbul, Turkey, pp. 1–8.
Leishman, G. J. (2006). Principles of helicopter aerodynamics with CD extra. 2nd ed. Cambridge University Press, Cambridge, UK. ISBN 978-0-521-85860-1.
LIIVA, J. (1969). Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil sections.
Journal of Aircraft,
6(1), 46–51.
https://doi.org/10.2514/3.44000
Lu, H., Lua, K. B., Lim, T. T., and Yeo, K. S.
(2014). Ground effect on the aerodynamics of a two-dimensional oscillating airfoil.
Experiments in Fluids,
55(7), 1787.
https://doi.org/ 10.1007/s00348-014-1787-4.
Molina, J., Zhang, X., & Alomar, A. (2016). Aerodynamics of a pitching and heaving airfoil in ground effect.
AIAA Journal,
54(4), 1158–1171.
https://doi.org/10.2514/1.J053350.
Moore, N., Wilson, P. A., & Peters, A. J. (2002). An investigation into wing in ground effect aerofoil geometry. In: Proceedings of the RTO Systems Concepts and Integration Panel Symposium (RTO-MP-095), NATO Research and Technology Organisation.
Moriche, M., Flores, O., & García-Villalba, M. (2017). On the aerodynamic forces on heaving and pitching airfoils at low reynolds number.
Journal of Fluid Mechanics,
828, 395–423.
https://doi.org/10.1017/jfm.2017.508.
Nicoud, F., & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity gradient tenso.
Flow, Turbulence and Combustion, 62(3), 183–200.
https://doi.org/10.1023/A:1009995426001
Poirel, D., & Mendes, F. (2014). Experimental small-amplitude self-sustained pitch–heave oscillations at transitional reynolds numbers.
AIAA Journal,
52(8), 1581–1590.
https://doi.org/10.2514/1.J052541.
Prakash Babu, D. R., Madhesh, D., Hasan, I., & Mukesh, R. (2025). Influence of rough surfaces on airfoil aerodynamics and the ground effect on near-wall flow.
Physics of Fluids, 37(2), 023607.
https://doi.org/10.1063/5.0252504.
Sarbandi, A., Naderi, A., & Parhizkar, H. (2020). The ground effect on flapping bio and NACA 0015 airfoils in power extraction and propulsion regimes.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
42(6), 287.
https://doi.org/10.1007/s40430-020-02376-5
Senturk, U., & Smits, A. J. (2019). Reynolds number scaling of the propulsive performance of a pitching airfoil.
AIAA Journal, 57(7), 2663–2669.
https://doi.org/10.2514/1.J058371.
Türkyılmazoglu, M., Gajjar, J. S. B., & Ruban, A. (1999). The absolute instability of thin wakes in an incompressible/compressible fluid.
Theoretical and Computational Fluid Dynamics,
13, 91–114.
https://doi.org/10.1007/s001620050006.
Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed.). Pearson Education. ISBN 978-0-13-127498-3.
Weller, H. G., Tabor, G., Jasak, H., and Fureby, C.
(1998). A Tensorial approach to computational continuum mechanics using object-oriented techniques.
Computers in Physics,
12(6), 620–631.
https://doi.org/10.1063/1.168744.
William, Y. E., Kanagalingam, S., & Mohamed, M. H. (2024). Ground effect investigation on the aerodynamic airfoil behaviour using large eddy simulation.
Journal of Fluids Engineering,
146(3).
https://doi.org/10.1115/1.4063696.
Zerihan, J., & Zhang, X. (2000). Aerodynamics of a single element wing in ground effect.
Journal of Aircraft,
37(6), 1058–1064.
https://doi.org/10.2514/2.2711
Zhang, X., & Zerihan, J. (2003). Off-surface aerodynamic measurements of a wing in ground effect.
Journal of Aircraft, 40(4), 716–725.
https://doi.org/10.2514/2.3150
Zhi, H., Xiao, T., Deng, S., Tong, M., Chen, P., & Wu, B
. (2022). Distinct wing-in-ground effect of airfoil in proximity to water waves.
AIAA Journal, 60(6), 3789–3804.
https://doi.org/10.2514/1.J061216