Direct Numerical Simulation of Turbulent Channel Flow with Spanwise System Rotation and Velocity Slip on Suction Wall

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, Yasouj University, Yasouj 75918-74934, Iran

2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

3 Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

10.47176/jafm.18.11.3425

Abstract

Direct numerical simulations are conducted to investigate the turbulent flow of an incompressible Newtonian fluid in a channel at a fully-developed state. The channel rotates steadily around its spanwise axis. A hydrophobic coating on the suction side introduces the velocity slip, while the pressure side maintains a no-slip boundary condition. Flow statistics are reported for different slip intensities, considering both rotating and stationary channel cases. Two main sources of asymmetry relative to the channel centerline are identified: slip at the suction wall and rotational effects. Results show that a linear region forms in the mean velocity profile of the rotating channel with slip, similar to the no-slip case, and this linear region widens as the rotation number increases. Distributions of velocity fluctuation RMS values and Reynolds shear stress are presented and analyzed for various conditions. Additionally, the structure of near-wall streaks and the evolution of instantaneous streamwise vorticity are examined.

Keywords

Main Subjects


Atefi, G. (1991). Quer angeströmter drehender Zylinder bei kleinen Reynoldszahlen und bei Schlupf. Archive of Applied Mechanics, 61(7), 488-502. https://doi.org/10.1007/BF00705241
Bech, K. H., & Andersson, H. I. (1997). Turbulent plane Couette flow subject to strong system rotation. Journal of Fluid Mechanics, 347, 289-314. https://doi.org/10.1017/S002211209700670X
Blasius, H. (1908). Grenzschichten in Flüssigkeiten mit kleiner Reibung. Zeitschrift für Mathematik und Physik, 56, 1-37.
Busse, A., & Sandham, N. D. (2012). Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Physics of Fluids, 24(5), 055111. https://doi.org/10.1063/1.4717732
Choi, C., Westin, K. J. A., & Breuer, K. S. (2003). Apparent slip flows in hydrophilic and hydrophobic microchannels. Physics of Fluids, 15(10), 2897-2902. https://doi.org/10.1063/1.1605425
Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22(104), 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
Grundestam, O., Wallin, S., & Johansson, A. V. (2008). Direct numerical simulations of rotating turbulent channel flow. Journal of Fluid Mechanics, 598, 177-199. https://doi.org/10.1017/S0022112008000046
Jagadeesan, K., Narasimhamurthy, V. D., & Andersson, H. I. (2022). The structure of turbulence in rotating rough-channel flows. International Journal of Heat and Fluid Flow, 95, 108956. https://doi.org/10.1016/j.ijheatfluidflow.2022.108956
Johnston, J. P., Halleen, R. M., & Lezius, D. K. (1972). Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. Journal of Fluid Mechanics, 56, 533-557. https://doi.org/10.1017/S0022112072000257
Kristoffersen, R., & Andersson, H. I. (1993). Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. Journal of Fluid Mechanics, 256, 163-197. https://doi.org/10.1017/S0022112093002834
Launder, B. E., & Tselepidakis, D. P. (1994). Application of a new second-moment closure to turbulent channel flow rotating in orthogonal mode. International Journal of Heat and Fluid Flow, 15(1), 2-10. https://doi.org/10.1016/0142-727X(94)90028-0
Launder, B. E., Tselepidakis, D. P., & Younis, B. A. (1987). A second-moment closure study of rotating channel flow. Journal of Fluid Mechanics, 183, 63-75. https://doi.org/10.1017/S0022112087002556
Maciel, Y., Picard, D., Yan, G., & Dumas, G. (2003, June 23-26). Fully developed turbulent channel flow subject to system rotation. 33rd AIAA Fluid Dynamics Conference. Orlando, FL. https://doi.org/10.2514/6.2003-4153
Manhart, M. (2004). A zonal grid algorithm for DNS of turbulent boundary layers. Computers & Fluids, 33(3), 435-461. https://doi.org/10.1016/j.compfluid.2003.08.001
Martell, M. B., Perot, J. B., & Rothstein, J. P. (2009). Direct numerical simulations of turbulent flows over superhydrophobic surfaces. Journal of Fluid Mechanics, 620, 31-41. https://doi.org/10.1017/S0022112008005010
Martell, M. B., Rothstein, J. P., & Perot, J. B. (2010). An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Physics of Fluids, 22(6), 065102. https://doi.org/10.1063/1.3428758
Martin, M. J., & Boyd, I. D. (2006). Momentum and heat transfer in a laminar boundary layer with slip flow. AIAA Journal of Thermophysics and Heat Transfer, 20(4), 710-719. https://doi.org/10.2514/1.18039
Martin, M. J., & Boyd, I. D. (2010). Falkner-Skan flow over a wedge with slip boundary conditions. AIAA Journal of Thermophysics and Heat Transfer, 24(2), 263-270. https://doi.org/10.2514/1.41998
Min, T., & Kim, J. (2004). Effects of hydrophobic surface on skin-friction drag. Physics of Fluids, 16(1), 55-58. https://doi.org/10.1063/1.1624832
Min, T., & Kim, J. (2005). Effects of hydrophobic surface on stability and transition. Physics of Fluids, 17(10), 108106. https://doi.org/10.1063/1.2073255
Moosaie, A. (2016). DNS of turbulent drag reduction in a pressure-driven rod-roughened channel flow by microfiber additives. Journal of Non-Newtonian Fluid Mechanics, 232, 1-10. https://doi.org/10.1016/j.jnnfm.2016.03.005
Moosaie, A. (2024). Stokes-type conjugate heat transfer and thermoelasticity analysis of a hollow spherical particle in a slip flow. International Communications in Heat and Mass Transfer, 159, 108110. https://doi.org/10.1016/j.icheatmasstransfer.2024.108110
Moosaie, A. (2025). Approximate analytical and numerical investigation of Oseen-type forced convection around a sphere in a low Reynolds number slip flow. International Journal of Thermal Sciences, 210, 109556. https://doi.org/10.1016/j.ijthermalsci.2024.109556
Moosaie, A., & Manhart, M. (2011). An algebraic closure for the DNS of fiber-induced turbulent drag reduction in a channel flow. Journal of Non-Newtonian Fluid Mechanics, 166(12), 1190-1197. https://doi.org/10.1016/j.jnnfm.2011.05.002
Moosaie A., & Sharifian A. (2024). Numerical simulation of steady incompressible slip flow around a circular cylinder at low Reynolds numbers, Acta Mechanica, 235, 6791-6811, 2024. https://doi.org/10.1007/s00707-024-04071-1
Moosaie, A., & Manhart, M. (2013). Direct Monte-Carlo simulation of turbulent drag reduction by rigid fibers in a channel flow. Acta Mechanica, 224(10), 2385-2413. https://doi.org/10.1007/s00707-013-0916-x
Moosaie, A., & Manhart, M. (2015). On the structure of vorticity and near-wall partial enstrophy in fibrous drag-reduced turbulent channel flow. Journal of Non-Newtonian Fluid Mechanics, 223, 249-256. https://doi.org/10.1016/j.jnnfm.2015.06.003
Moosaie, A., & Manhart, M. (2016). On the pressure-strain correlation in fibrous drag-reduced turbulent channel flow. Physics of Fluids, 28(2), 025101. https://doi.org/10.1063/1.4940772
Moosaie, A., & Panahi-Kalus, H. (2021). Direct numerical simulation of turbulent heat transfer with slip and temperature jump. AIAA Journal of Thermophysics and Heat Transfer, 35(3), 580-588. https://doi.org/10.2514/1.T6136
Moosaie, A., Shekouhi, N., Nouri, N. M., & Manhart, M. (2015). An algebraic closure model for the DNS of turbulent drag reduction by Brownian microfiber additives in a channel flow. Journal of Non-Newtonian Fluid Mechanics, 226, 60-66. https://doi.org/10.1016/j.jnnfm.2015.10.004
Nakabayashi, K., & Kitoh, O. (1996). Low Reynolds number fully developed two-dimensional turbulent channel flow with system rotation. Journal of Fluid Mechanics, 315, 1-29. https://doi.org/10.1017/S0022112096002282
Nakabayashi, K., & Kitoh, O. (2005). Turbulence characteristics of two-dimensional channel flow with system rotation. Journal of Fluid Mechanics, 528, 355-377. https://doi.org/10.1017/S0022112004003397
Narasimhamurthy, V. D., & Andersson, H. I. (2015). Turbulence statistics in a rotating ribbed channel. International Journal of Heat and Fluid Flow, 51, 29-41. https://doi.org/10.1016/j.ijheatfluidflow.2014.10.010
Ou, J., Perot, J. B., & Rothstein, J. (2004). Laminar drag reduction in microchannels using superhydrophobic surfaces. Physics of Fluids, 16(12), 4635–4643. https://doi.org/10.1063/1.1812011
Park, H., Park, H., & Kim, J. (2013). A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Physics of Fluids, 25(11), 110815. https://doi.org/10.1063/1.4828785
Schumann, U. (1975). Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. Journal of Computational Physics, 18(4), 376-404. https://doi.org/10.1016/0021-9991(75)90093-5
Speziale, C. G., & Thangam, S. (1983). Numerical study of secondary flows and roll-cell instabilities in rotating channel flow. Journal of Fluid Mechanics, 130, 377-395. https://doi.org/10.1017/S0022112083001240
Stone, H. L. (1968). Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM Journal on Numerical Analysis, 5(3), 530-538. https://doi.org/10.1137/0705044
Temam, R. (1969). Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II). Archive for Rational Mechanics and Analysis, 33, 377-385. https://doi.org/10.1007/BF00247688
Tretheway, D. C., & Meinhart, C. D. (2002). Apparent fluid slip at hydrophobic microchannel walls. Physics of Fluids, 14(3), L9-L12. https://doi.org/10.1063/1.1432696
Visscher, J., & Andersson, H. I. (2011). Particle image velocimetry measurements of massively separated turbulent flows with rotation. Physics of Fluids, 23(7), 075108. https://doi.org/10.1063/1.3611017
Visscher, J., Andersson, H. I., Barri, M., Didelle, H., Viboud, S., Sous, D., & Sommeria, J. (2011). A new set-up for PIV measurements in rotating turbulent duct flows. Flow Measurement and Instrumentation, 22(1), 71-80. https://doi.org/10.1016/j.flowmeasinst.2010.12.002
Wang, W., Niu, X., Fan, K., & Wang, Q. (2011). Stokes’ second problem with velocity slip boundary condition. Key Engineering Materials, 483, 287-292. https://doi.org/10.4028/www.scientific.net/KEM.483.287
Watanabe, K., Udagawa Y., & Udagawa, H. (1999). Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. Journal of Fluid Mechanics, 381, 225-238. https://doi.org/10.1017/S0022112098003743
Williamson, J. H. (1980). Low-storage Runge-Kutta schemes. Journal of Computational Physics, 35(1), 48-56. https://doi.org/10.1016/0021-9991(80)90033-9
Youngblood, J. P., Andruzzi, L., Ober, C. K., Hexemer, A., Kramer, E. J., Callow, J. A., Finlay, J. A., & Callow, M. E. (2003). Coating based on side-chain ether-linked poly (ethylene glycol) and fluorocarbon polymers for the control of marine biofouling. Biofouling, 19(2), 91-98. https://doi.org/10.1080/0892701021000057886.