Erosion Wear and Flow Characteristics of Tri-eccentric Butterfly Valves under Liquid‒solid Two-phase Flow

Document Type : Regular Article

Authors

1 School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China

2 Liupanshan Laboratory, Yinchuan 750000, China

10.47176/jafm.18.11.3564

Abstract

Excellent sealing performance drives the tri-eccentric butterfly valve’s extensive adoption across wastewater treatment sector. Erosion wear is an important cause of leakage and damage in tri-eccentric butterfly valves. Valve surface erosion is affected by the vorticity, particle shape, velocity, and other factors. This paper uses the Computational Fluid Dynamics–Discrete Element Method (CFD-DPM) to build an erosion model based on the Erosion-Corrosion Research Center (E/CRC) methodology, investigating the valve opening’s influence on erosion rates under sand particle flow conditions. The two-way coupling phase interaction, wall roughness, particle diameter distribution, and particle geometry are considered in the proposed erosion model. The numerical model is validated through wear and flow experiments. Moreover, the vorticity and velocity correlation coefficients are investigated, with those in the valve stem region exceeding 0.9. The influence of vortex core regions on particle trajectories is investigated, revealing that the velocity angle approaches ±90° in vortex core regions. The numerical results indicate that the sealing surface is particularly vulnerable to wear from particle erosion, exhibiting a peak value of 8.53×10-7 kg·m-2·s-1. Additionally, wall erosion rate is influenced by vorticity, which alters the angular velocity of solid particles and affects vortex formation.

Keywords

Main Subjects


Chen, D. S., Jiang, J. Y., Ming, L. N., Zhang, G., Lin, Z., & Li, H. (2025). Study on gas-liquid-solid multiphase flow and erosion in ball valves, Engineering Failure Analysis, 167, 108945. https://doi.org/10.1016/j.engfailanal.2024.108945
Forder, A., Thew, M., & Harrison, D. (1998). A numerical investigation of solid particle erosion experienced within oilfield control valves. Wear, 216, 184-193.
Gao, G. Y., Guo, S. S., & Li, D. R. (2024). A review of cavitation erosion on pumps and valves in nuclear power plants. Materials, 17(5), 1007. https://doi.org/10.3390/ma17051007
Geng, K. H., Hu, C. X., Yang, C., & Rong, R. (2021). Numerical investigation on transient aero-thermal characteristics of a labyrinth regulating valve for nuclear power plant. Nuclear Engineering and Design, 382, 111369. https://doi.org/10.1016/j.nucengdes.2021.111369
Gosman, A. D., & Ioannides, E. (1983). Aspects of computer simulation of liquid-fuelled combustors. Journal of Energy, 7(6), 482-490.
Guan, A. Q., Zhong, F. P., Qiu, C., Jin, Z. J., & Qian, J. Y. (2024). Erosion wear analysis on valve cage of cage-typed sleeve control valve for coal liquefaction. Journal of Fluids Engineering-Transactions of the ASME, 146(10), 101206. https://doi.org/10.1115/1.4065306
Haider, A., & Levenspiel, O. (1989). Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 58, 63-70.
Hong, S. M., Peng, G. J., Yu, D. H., Chang, H., & Wang, X. K. (2023). Investigation on the erosion characteristics of liquid-solid two-phase flow in tee pipes based on CFD-DEM. Journal of Marine Science and Engineering, 11(12), 2231. https://doi.org/10.3390/jmse11122231
Hunt, J. C. R., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Summer Program of the Center for Turbulent Research. 193-207.
Javaheri, V., Porter, D., & Kuokkala, V. T. (2018). Slurry erosion of steel-review of tests, mechanisms and materials. Wear, 408, 248-273. https://doi.org/10.1016/j.wear.2018.05.010
Jin, H., Xiang, H., Wang, M., Wen, R., Liu, X., & Wang, C. (2024a). Numerical study of erosion wear characteristics in a high-pressure black water angle valve by using CFD-VOF-DPM method. Journal of Applied Fluid Mechanics, 17(9), 2061-2078. https://doi.org/10.47176/JAFM.17.9.2456
Jin, H. Z., He, J., Wang, C., & Liu, X. F. (2024b). Influence of particle shape on erosive wear in liquid-solid two-phase flow of blackwater angle valves. Powder Technology, 448, 120320. https://doi.org/10.1016/j.powtec.2024.120320
Kang, J., Yuan, Z. H., Li, J. C., Yang, P. F., & Liang, N. (2024a). Performance degradation model and life prediction method of spool pair caused by erosion wear. Flow Measurement and Instrumentation, 97, 102610. https://doi.org/10.1016/j.flowmeasinst.2024.102610
Kang, C., Li, M. H., Teng, S., Liu, H. X., & Chen. Z. R. (2024b). Erosive wear caused by large solid particles carried by a flowing liquid: a comprehensive review. Processes, 12(6), 1150. https://doi.org/10.3390/pr12061150
Khan, R., Wieczorowski, M., Seikh, A. H., & Alnaser, I. A. (2024). Experimental and numerical study of erosive wear of t-pipes in multiphase flow. Engineering Science and Technology-An International Journal, 52, 101683. https://doi.org/10.1016/j.jestch.2024.101683
Li, D. B., Liu, X. C., Liao, H. H., Bing, L., Hou, P. Y., Nie, R., & Jiao, Z. X. (2024). A prediction model of fluid-solid erosion wear in hydraulic spool orifice. Wear, 540, 205235. https://doi.org/10.1016/j.wear.2023.205235
Li, S.X., Zhang, B. H., Yang, L. X., Zhang, J. Z., Wang, Y. X., & Kang, W. Y. (2023). Study on wear properties of the graphite-sealing surfaces in triple eccentric butterfly valve based on EDEM-fluent coupling. Machines, 11(4), 463. https://doi.org/10.3390/machines11040463
Li, Y. Z., Du, J. T., Lan, Y. J., Du, H., & Huang, H. (2022). Numerical analysis of the factors influencing the erosion of the valve port of a high-speed on/off valve. Applied Sciences-Basel, 12(12), 6212. https://doi.org/10.3390/app12126212
Lin, Z. H., Li, J. Y., Jin, Z. J. & Qian, J. Y. (2021). Fluid dynamic analysis of liquefied natural gas flow through a cryogenic ball valve in liquefied natural gas receiving stations. Energy, 226, 120376. https://doi.org/10.1016/j.energy.2021.120376
Lin, Z., Yu, H. B., Yu, T. C., & Zhu, Z. C. (2022). Numerical study of solid-liquid two-phase flow and erosion in ball valves with different openings. Advanced Powder Technology, 33(5), 103542. https://doi.org/10.1016/j.apt.2022.103542
Liu, B., Zhao, J. G., & Qian, J. H. (2017). Numerical analysis of cavitation erosion and particle erosion in butterfly valve. Engineering Failure Analysis, 80, 312-324. https://doi.org/10.1016/j.engfailanal.2017.06.045
Liu, X. Q., Qi, M. H., Ji, H., Liu, F., Lin, G., & Xiao, Y. (2024a). Orifice erosion effect and variable gain control method for hydraulic servo spool valve. Flow Measurement and Instrumentation, 100, 102714. https://doi.org/10.1016/j.flowmeasinst.2024.102714
Liu, Q. T., Xie, C. H., & Cheng, B. X. (2024b). Butterfly valve erosion prediction based on LSTM network. Flow Measurement and Instrumentation, 98, 102652. https://doi.org/10.1016/j.flowmeasinst.2024.102652
Ma, G. F., Lin, Z., & Zhu, Z. C. (2020). Investigation of transient gas-solid flow characteristics and particle erosion in a square gate valve. Engineering Failure Analysis, 118, 104827. https://doi.org/10.1016/j.engfailanal.2020.104827
Oka, Y. I., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact, part 2: mechanical properties of materials directly associated with erosion damage. 15th International Conference on Wear of Materials, 259, 102-109.
Ou, G., Cao, X., Wang, C., Duan, A., & Jin, H. (2022). CFD-DEM-based numerical simulation of erosion characteristic of multistage pressure relief string regulating valve. Journal of Applied Fluid Mechanics, 15(4), 999-1015. https://doi.org/10.47176/JAFM.15.04.1022
Peng, D. H., Dong, S. H., Wang, Z. Q., Wang, D. Y., Chen, Y.N, & Zhang, L. B. (2021). Characterization of the solid particle erosion of the sealing surface materials of a ball valve. Metals, 11(2), 263. https://doi.org/10.3390/met11020263
Perera, P., Hayward, K., Guzzomi, F., & Vafadar, A. (2024). Erosion wear characterization of an open ductile iron butterfly valve to aluminium oxide flow. Tribology International, 191, 109199. https://doi.org/10.1016/j.triboint.2023.109199
Qian, J. Y., Xu, J. X., Zhong, F. P., Lin, Z. H., Hua, T. F., & Jin, Z. J. (2023). Solid-liquid flow characteristics and sticking-force analysis of valve-core fitting clearance. Journal of Zhejiang University-Science A, 24(12), 1096-1105. https://doi.org/10.1631/jzus.A2300061
Shin, T. H., Liou, W. W., Shabbir, A., Yang, Z. G., & Jiang, Z. (1995). A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers and Fluids, 24(3), 227-238.
Shokri, R., Ghaemi, S., Nobes, D. S., & Sanders, R. S. (2017). Investigation of particle-laden turbulent pipe flow at high-Reynolds-number using particle image/tracking velocimetry. International Journal of Multiphase Flow, 89, 136-149. https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.023
Su, G. Q., Li, Y., & Zhang, J. W. (2024). Flow accelerated corrosion and thinning mechanism of the pipeline after the butterfly valve based on CFD. Engineering Failure Analysis, 156, 107844. https://doi.org/10.1016/j.engfailanal.2023.107844
Sun, X., Kim, H. S., Yang, S. D., Kim, C. K., & Yoon, J. Y. (2017). Numerical investigation of the effect of surface roughness on the flow coefficient of an eccentric butterfly valve. Journal of Mechanical Science and Technology, 31(6), 2839-2848. https://doi.org/10.1007/s12206-017-0527-0
Tarodiya, R., & Levy, A. (2021). Surface erosion due to particle-surface interactions-a review. Powder Technology, 387, 527-559. https://doi.org/10.1016/j.powtec.2021.04.055
Veiskarami, A., & Saidi, M. (2024). Numerical analysis of gas-solid flow erosion in different geometries as alternatives to a standard pipe elbow. Powder Technology, 448, 120334. https://doi.org/10.1016/j.powtec.2024.120334
Wang, J. L., Zhang, Y. F., & Tang, H. S. (2024). Erosion wear characteristics of metal seal floating ball valve in gas-solid-liquid three-phase flow. AIP Advance, 14(6), 065202. https://doi.org/10.1063/5.0210843
Wen, F. P., Xu, L. Y., Chen, Y. X., Deng, Z. F., Zhang, S., Song, W. M., Li, Y. G., & Wei, L. P. (2024). Numerical simulation of water-slag elbow erosion-inhibiting by regulating the slag injection position with a novel preceding rotating sheet structure. Particuology, 90, 323-339. https://doi.org/10.1016/j.partic.2024.01.001
Xiong, J. F., Bu, Y. B., Zhang, G. J., Liu, J., Xu, G. L., & Huang, X. M. (2024). Study on a leakage rate predictive model with application in multi-conditions conversion for double-offset butterfly valves. Nuclear Engineering and Design, 429, 113630. https://doi.org/10.1016/j.nucengdes.2024.113630
Xu, B. L., Lin, Z., Zhu, Z. C., & Yu, T. C. (2022). Experimental and simulation study of the effect of gravity on the solid-liquid two-phase flow and erosion of ball valve. Advanced Powder Technology, 33(2), 103416. https://doi.org/10.1016/j.apt.2021.103416
Xu, B. L., Zhu, Z. C., Lin, Z., & Wang, D. R. (2021). Solid-liquid two-phase flow and erosion calculation of butterfly valves at small opening based on DEM method. Industrial Lubrication and Tribology, 73(3), 414-421. https://doi.org/10.1108/ILT-07-2020-0264.
Yan, L., Ma, X., Miao, X., Wang, Y., Pang, Y., & Song, X. (2024). Numerical investigation and rapid prediction of the erosion rate of gate valve in gas-solid flow. Powder Technology, 448, 120285. https://doi.org/10.1016/j.powtec.2024.120285
Yang, X. L., Lü, Y. J., Xu, L., Ma, Y. S., Chen, R. B., & Zhao, X. W. (2024). Numerical investigation on cavitation erosion and evolution of choked flow in a tri-eccentric butterfly valve. Flow Measurement and Instrumentation, 100, 102725. https://doi.org/10.1016/j.flowmeasinst.2024.102725
Yin, Y. B., Yuan, J. Y., & Guo, S. G. (2017). Numerical study of solid particle erosion in hydraulic spool valves. Wear, 392, 174-189. https://doi.org/10.1016/j.wear.2017.09.021
Zeng, L., Zhang, G. A. & Guo, X. P. (2014). Erosion-corrosion at different locations of X65 carbon steel elbow. Corrosion Science, 85, 318-330. https://doi.org/10.1016/j.corsci.2014.04.045
Zhang, J., Yin, W. L., Wang, X., Zheng, S. W., Pan, L.J., & Zhai, F.G. (2024a). Flow field torque analysis and valve plate optimization of butterfly anti-stick bleed valve. Flow Measurement and Instrumentation, 100, 102685. https://doi.org/10.1016/j.flowmeasinst.2024.102685
Zhang, G., Zhang, H. Y., Xin, J. L. Chen, D. S., & Lin, Z. (2024b). Numerical study of solid-liquid two-phase flows and erosion in a Y-type slurry valve with different seat structures. Journal of Applied Fluid Mechanics, 17(8), 1657-1676. https://doi.org/10.47176/jafm.17.8.2451
Zhang, Y., Reuterfors, E. P., Mclaury, B. S., Shirazi, S. A., & Rybicki, E. F. (2007). Comparison of computed and measured particle velocities and erosion in water and air flows. Wear, 263, 330-338. https://doi.org/10.1016/j.wear.2006.12.048
Zhao, L., Wu, J. Y., Jin, Z. J., & Qian, J. Y. (2022). Cavitation effect on flow resistance of sleeve regulating valve. Flow Measurement and Instrumentation, 88, 102259. https://doi.org/10.1016/j.flowmeasinst.2022.102259
Volume 18, Issue 11 - Serial Number 103
November 2025
Pages 2711-2729
  • Received: 26 March 2025
  • Revised: 03 June 2025
  • Accepted: 29 June 2025
  • Available online: 03 September 2025