Bu, F., Jiao, Y., & Wang, J. (2024). Novel close-clearance impeller structure for solid–liquid mixing at low reynolds numbers based on the paravisc impeller.
Industrial & Engineering Chemistry Research,
63(35), 15585–15599.
https://doi.org/10.1021 /acs.iecr.4c02001
Dong, W., Zhang, X., Jiang, Z., Hu, X., Ge, Y., & Zhang, L. (2025). Study on structure design and parameter optimization of diversion rifled feeder based on CFD-DEM.
Agriculture-Basel,
15(3), 351.
https://doi.org/10.3390/agriculture15030351
Guo, X., Lu, W., Lu, H., Cong, X., Xie, K., Liu, H., & Gong, X. (2013). Pressure drop prediction for horizontal dense-phase pneumatic conveying of pulverized coal associated with feeding to gasifier.
Chemical Engineering Research and Design,
91(12), 2509–2514.
https://doi.org/10.1016/j.cherd.2013.04.012
Hou, P., Besenhard, M. O., Halbert, G., Naftaly, M., & Markl, D. (2023). Development and implementation of a pneumatic micro-feeder for poorly-flowing solid pharmaceutical materials.
International Journal of Pharmaceutics,
635, 122691.
https://doi.org/10.1016/j.ijpharm.2023.122691
Lourenço, G. A., Gomes, T. L. C., Duarte, C. R., & Ataíde, C. H. (2019). Experimental study of efficiency in pneumatic conveying system’s feeding rate.
Powder Technology,
343, 262–269.
https://doi.org/10.1016/j.powtec.2018.11.002
Macchini, R., Bradley, M. S. A., & Deng, T. (2013). Influence of particle size, density, particle concentration on bend erosive wear in pneumatic conveyors.
Wear,
303(1–2), 21–29.
https://doi.org/10.1016/j.wear.2013.02.014
Pezo, L., Banjac, V., Pezo, M., Jovanović, A. P., Đuragić, O., Čolović, D., & Čolović, R. (2021). Mathematical model, numerical simulation and optimization of rotating valve feeder in animal feed production.
Animal Feed Science and Technology,
272, 114741.
https://doi.org/10.1016/j.anifeedsci.2020.114741
Saleh, K., Traore Ndama, A., & Guigon, P. (2011). Relevant parameters involved in tribocharging of powders during dilute phase pneumatic transport.
Chemical Engineering Research and Design,
89(12), 2582–2597.
https://doi.org/10.1016/j.cherd.2011.06.001
Saluja, G., Mallick, S. S., & Karmakar, S. (2024). Predicting pneumatic conveyability and flowability of fly ash using bulk property characterization.
Particulate Science and Technology,
42(3), 482–494.
https://doi.org/10.1080/02726351.2023.2261420
Santo, N., Portnikov, D., Eshel, I., Taranto, R., & Kalman, H. (2018a). Experimental study on particle steady state velocity distribution in horizontal dilute phase pneumatic conveying.
Chemical Engineering Science,
187, 354–366.
https://doi.org/10.1016/j.ces.2018.04.058
Santo, N., Portnikov, D., Tripathi, N. M., & Kalman, H. (2018b). Experimental study on the particle velocity development profile and acceleration length in horizontal dilute phase pneumatic conveying systems.
Powder Technology,
339, 368–376.
https://doi.org/10.1016/j.powtec.2018.07.074
Schadauer, C., Martetschläger, G. R., Ilie, A. L., Angerbauer, A., & Lanzerstorfer, C. (2020). Casting powders: Influence of the humidity on the flowability.
Ironmaking & Steelmaking,
47(5), 460–463.
https://doi.org/10.1080/03019233.2020.1725730
Shang, K., Li, Y., Song, H., Xu, X., & Zhang, H. (2024). Research on flow field characteristics of curved pipe in bulk grain cyclone conveying based on gas solid coupling.
Journal Of Food Process Engineering,
47(9), e14725.
https://doi.org/10.1111/jfpe.14725
Shang, K., Li, Y., Xu, X., Zhang, Y., & Zhang, Y. (2023). Study on the flow field characteristics of bulk grain pipeline based on gas-solid heterogeneous coupling.
Cogent Food & Agriculture,
9(1), 2219472.
https://doi.org/10.1080/23311932.2023.2219472
Sun, Z., Chen, L., Gao, K., Ma, G., Ma, H., Li, P., & Zhang, Y. (2023). Additional pressure loss coefficient of pneumatic conveying of moist-mixed materials for shotcrete based on CFD-DEM method.
Journal Of Building Engineering,
76, 107242.
https://doi.org/10.1016/j.jobe.2023.107242
Wang, Z., Wang, T., Zhou, M., & Zhao, L. (2024). CFD modeling of gas–solid flow in a two-stage jetting fluidized bed with an overflow standpipe.
Asia-Pacific Journal of Chemical Engineering,
20(1).
https://doi.org/10.1002/apj.3163
Woodruff, R. B., Kreider, P., & Weimer, A. W. (2012). A novel brush feeder for the pneumatic delivery of dispersed small particles at steady feed rates.
Powder Technology,
229, 45–50.
https://doi.org/10.1016/j.powtec.2012.06.002
Wu, C., Zhao, L., & Cao, Z. (2024). Collision energy analysis within the vertical shaft impact crusher based on the computational fluid dynamics-discrete element method.
ACS Omega, acsomega.3c08017.
https://doi.org/10.1021/acsomega.3c08017
Wypych, P. W., Hastie, D. B., Frew, I., & Cook, D. M. (2006). An experimental investigation into the feed rate capacity of rotary valve and blow tank feeders.
Particulate Science and Technology,
24(2), 165–179.
https://doi.org/10.1080/02726350500544216
Yan, F., & Rinoshika, A. (2012). Characteristics of particle velocity and concentration in a horizontal self-excited gas–solid two-phase pipe flow of using soft fins.
International Journal of Multiphase Flow,
41, 68–76.
https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.004
Yao, J., Wang, C. H., Wee Chuan Lim, E., & Bridgwater, J. (2006). Granular attrition in a rotary valve: Attrition product size and shape.
Chemical Engineering Science,
61(11), 3435–3451.
https://doi.org/10.1016/j.ces.2005.12.013
Zhang, F., O’Mahony, J. A., Miao, S., & Cronin, K. (2023). An Experimental Study on the Dilute Phase Pneumatic Conveying of Fat-Filled Milk Powders: Particle Breakage.
Powders,
2(1), 1.
https://doi.org/10.3390/powders2010009
Zhang, X., Zhao, C., Ge, H., Liu, Z., Liu, Y., & Jiao, L. (2024). Analysis of gas-solid flow characteristics in intricate pipelines.
Chemical Engineering Research and Design,
204, 438–449.
https://doi.org/10.1016/j.cherd.2024.03.010
Zhao, Y., Dahiphale, S., Tan, Y. Z., Wang, C. H., & Chew, J. W. (2020). The effect of particle initial charge on minimum pickup velocity (
Upu) in pneumatic conveying.
Chemical Engineering Research and Design,
156, 343–352.
https://doi.org/10.1016/j.cherd.2020.02.013
Zhou, F., Hu, S., Liu, Y., Liu, C., & Xia, T. (2014). CFD–DEM simulation of the pneumatic conveying of fine particles through a horizontal slit.
Particuology,
16, 196–205.
https://doi.org/10.1016/j.partic.2014.03.015
Zhou, J., Ba, H., Yan, X., & Shangguan, L. (2023). Solid friction coefficient in a horizontal straight pipe of pneumatic conveying.
Chemical Engineering Research and Design,
196, 577–587.
https://doi.org/10.1016/j.cherd.2023.07.001