Effect of Novel Stepped Airfoil Fin Inserts on Heat Transfer Enhancement and Fluid Flow Characteristics of Printed Circuit Heat Exchanger

Document Type : Regular Article

Authors

1 Department of Aeronautical Engineering, Kumaraguru College of Technology, Coimbatore 641049, Tamil Nadu, India

2 Department of Mechanical Engineering, SNS College of Technology, Coimbatore-641107, Tamil Nadu, India

3 Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai-602105, Tamil Nadu, India

10.47176/jafm.18.11.3453

Abstract

In recent years, researchers have shown considerable interest in supercritical carbon dioxide (sCO₂) Brayton cycle-based power plants due to their unique characteristics and higher efficiency compared with conventional Rankine cycle systems. The printed circuit heat exchanger (PCHE) is a key component that significantly influences the performance of the sCO₂ cycle, owing to its compact structure and high surface area-to-volume ratio. However, designing efficient and compact PCHEs continues to be a significant challenge, mainly because it requires balancing heat transfer effectiveness with pressure drop, a task made more complex by the intricate configuration of micro-channels. This study aims to investigate the impact of airfoil fin geometry modifications on heat transfer enhancement in PCHEs using the ANSYS Fluent computational tool. Ten novel stepped airfoil fin models were introduced and analysed. The results demonstrate that airfoil fin model 9, characterised by a double-stepped profile and a flattened trailing edge, achieves a 28% increase in heat transfer rate and a 27.37% improvement in the Nusselt number compared with the baseline airfoil fin design under various operating conditions. These improvements are attributed to enhanced turbulence generated by the stepped profile, which promotes more effective convective heat transfer.

Keywords

Main Subjects


Ajinkya, M., Ankush, K. J., Sagar, D. K., Jesus, D. O, Clifford, H., Rucha, B., & Pradip, D. (2016). Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications.  Applied Thermal Engineering, 109, Part B., 861-870.  https://doi.org/10.1016/j.applthermaleng.2016.05.033
Aneesh, A. M., Atul, S., Atul, S., & Paritosh, C. (2017). Thermo-Hydraulic performance of zigzag, wavy, and serpentine channel based PCHEs. Fluid Mechanics and Fluid Power – Contemporary Research, 507–516. https://doi.org/10.1007/978-81-322-2743-4_49
Baik, S., Kim, S. G., Lee, J., & Lee, J. I. (2016). Study on CO2 – water printed circuit heat exchanger performance operating under various CO₂ phases for SCO₂ power cycle application. Applied Thermal Engineering, 113, 1536–1546. https://doi.org/10.1016/j.applthermaleng.2016.11.132
Dong, E. K., Moo, H. K., Jae, E. C., & Seong, O. K. (2021). Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model. Nuclear Engineering and Design, 238(12), 3269–3276. https://doi.org/10.1016/j.nucengdes.2008.08.002
Fei, C., Lishen, Z., Xiulan, H., Jufeng, Li., Hang, Z., & Zhigang, L. (2017). Comprehensive performance comparison of airfoil fin PCHEs with NACA series airfoil. Nuclear Engineering and Design, 315, 42-50. https://doi.org/10.1016/j.nucengdes.2017.02.014
Chhaparwal, G. K., Rahul, Goyal., Ankur, S., Ashish, G., Ankit, D. O., Md Irfanul, H. S., Natrayan, L., Laveet, K., & Sonawane, C. (2024). Numerical and experimental investigation of a solar air heater duct with circular detached ribs to improve its efficiency. Case Studies in Thermal Engineering, 60, 104780.   https://doi.org/10.1016/j.csite.2024.104780
Ganeshkumar, S., Kumar, A., Maniraj, V., Suresh Babu, Y., Alok Kumar, A., Ashish Goyal., Iman Kareem K., Kuldeep, K. S., Prakash, C., Altuijri, R., Ijaz Khan, M., & Ahmed M, H. (2024). Investigations on cooling heat transfer of CO2-based mixtures in a novel airfoil fin mini-channel at supercritical pressure. Arabian Journal of Chemistry, 16(10), 105173. https://doi.org/10.1016/j.arabjc.2023.105173
Gopinath, V., Krishna Priya, M., Rajeshwaran, V., Sudhagaran, D., Shyam Sundar, J., Arul Prakash, R., Beena Stanislaus, A., Parvathy, R., Senthil Kumar, M., & Vijayanandh, R.  (2024). Design and Multi-Perspective Investigations on the Aerodynamic Performance Factors of Conventional and Advanced UAV’s Micro Gas-Turbine Engine Nozzles Through Validated CFD Approach. International Journal of Fluid Mechanics Research, 51(2), 15–64. https://doi.org/10.1615/InterJFluidMechRes.2024051464
Haiyan, Z., Jiangfeng, Guo., Xinying, C., Jingzhi, Z., Xiulan, H., Huzhong, Z., Keyong, C., & Zengxiao H. (2021). Experimental and numerical investigations of thermal-hydraulic characteristics in a novel airfoil fin heat exchanger. International Journal of Heat and Mass Transfer, 175, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121333
Haiyan, Z., Junfeng, W., Jun, P., Zicheng, H., & Ziyi, S. (2024). Exploring the potential of nano technology: A assessment of nano-scale multi-layered-composite coatings for cutting tool performance. Applied Thermal Engineering, 255, 124010. https://doi.org/10.1016/j.applthermaleng.2024.124010
In, H. K., & Hee, C. N. (2013). Thermal–hydraulic physical models for a Printed Circuit Heat Exchanger covering He, He–CO2 mixture, and water fluids using experimental data and CFD. Experimental Thermal and Fluid Science,48, 213-221. https://doi.org/10.1016/j.expthermflusci.2013.03.003
Ishizuka, T., Kato, Y., Muto, Y., Konstantin, N., & Tri Lam, N. (2006). Thermal-hydraulic characteristics of a printed circuit heat exchanger in a Supercritical CO2 loop. The 11th International Topical Meetingon Nuclear Reactor Thermal-Hydraulics, NURETH 11th-218. https://doi.org/10.1016/j.ijrefrig.2005.11.005
Jin, G. K., Tae, H. K., Hyun, S. P., Jae, E. C., & Moo, H. K. (2016). Optimization of airfoil-type PCHE for the recuperator of small-scale Brayton cycle by cost-based objective function. Nuclear Engineering Design, 298, 192–200. https://doi.org/10.1016/j.nucengdes.2015.12.012
Joo Hyun, P., & Moo Hwan, K. (2024). Experimental investigation on comprehensive thermal-hydraulic performance of supercritical CO2 in a NACA 0020 airfoil fin printed circuit heat exchanger. International Journal of Heat and Mass Transfer, 220, 124947. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124947
Karthigairajan, M., Seeniappan, K., Balaji, N., Natrayan, L. Salman, B. S., & Ravi, D. (2025). Performance analysis of graphene-coated heat pipe heat exchangers for automobile exhaust cooling and purification. SAE Technical Paper 2025-01-5006. https://doi.org/10.4271/2025-01-5006.
Kodi, R., Ravuri, M., Gulle, N., Ganteda, C., Khan, S. U., & Ijaz Khan, M. (2022). Hall and ion slip radiative flow of chemically reactive second grade through porous saturated space via perturbation approach. Waves in Random and Complex Media, 1–17. https://doi.org/10.1080/17455030.2022.2108555
Kumar, R., Ravi Kumar, D., Ranjeet Kumar, A., Pankaj S., Anil Singh, Y., Kuldeep K. S., Ijaz Khan, M., & Sana Ben, M. (2023). Current development of carbide free bainitic and retained austenite on wear resistance in high silicon steel. Journal of Materials Research and Technology, 24, 9171-9202. https://doi.org/10.1016/j.jmrt.2023.05.067
Kun, X., Xiang, Z., Zhihui, X., Fankai, M., Zhuoqun, L., & Xiangkun, J. (2023). Thermal-hydraulic characteristics of carbon dioxide in printed circuit heat exchangers with staggered airfoil fins. Processes, 11(8), 2244. https://doi.org/10.3390/pr11082244
Lei, L., Ting, M., Xiang, Y, X., Min, Z, & Qiuwang, W. (2014a). Optimization of fin arrangement and channel configuration in an Airfoil Fin PCHE for supercritical CO2 cycle. Applied Thermal Engineering, 70(1), 867-875. https://doi.org/10.1016/j.applthermaleng.2014.05.040
Lei, L., Ting, M., Xiang, Y, X., Min, Z, & Qiuwang, W. (2014b). Study on heat transfer and pressure drop performances of airfoil-shaped printed circuit heat exchanger. Chemical Engineering Transactions, 39, 895-900. https://doi.org/10.3303/CET1439150
Lei, X., Zhang, Q., Zhang, J., & Li, H. (2017). Experimental and numerical investigation of convective heat transfer of supercritical carbon dioxide at low mass fluxes. Applied Sciences, 7(12), 1260. https://doi.org/10.3390/app7121260
Minghui, C., Xiaodong, S., Richard, N. C., Isaac, S., Vivek, U., & Piyush, S. (2016). Pressuredrop and heat transfer characteristics of a high-temperature printed circuit heat exchanger. Applied Thermal Engineering, 108, 1409–1417, https://doi.org/10.1016/j.applthermaleng.2016.07.149
Sandeep, R. P., Mark, A., & Devesh, R. (2018, March 27-29). Thermal-hydraulic performance of discontinuous fin heat exchanger geometries using Supercritical CO2 as the working fluid. The 6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, Pennsylvania. https://sco2symposium.com/papers2018/heat exchangers/130_Paper.pdf.
Pinaa, P., Ferrãoa, J., & Fournierb, C. (2019). Study of the printed circuit heat exchanger for supercritical CO2 application. 2nd International Conference on Sustainable Energy and Resource Use in Food Chains, ICSEF2018.DOI: https://doi.org/10.1016/j.egypro.2019.02.066
Raghunath, K., Ramachandra Reddy, V., Ijaz Khan, M., Sherzod Shukhratovich, A., Habibullah., Boudjemline, A., H., Mohamed Boujelbene., & Yassine, B. (2023). Unsteady magneto-hydro-dynamics flow of Jeffrey fluid through porous media with thermal radiation, Hall current and Soret effects. Journal of Magnetism and Magnetic Materials, 582, 171033. https://doi.org/10.1016/j.jmmm.2023.171033
Raji, A. P., Ranganathan, S., Stanislaus Arputharaj, B., & Vijayanandh, R. (2024). Thermostructural analysis on airfoil fin printed circuit heat exchanger using supercritical CO2. Journal of Thermal Analysis and Calorimetry, 149(9), 4153–4177. https://doi.org/10.1007/s10973-024-12925-y.
Saeed, M., & Kim, M. (2017). Thermal and hydraulic performance of sCO2 PCHE with different fin Configurations. Applied Thermal Engineering, 127, 975-985. https://doi.org/10.1016/j.applthermaleng.2017.08.113
Sandeep, R. P., Eric, U., Jacob, A. Mc, F., Devesh, R., & Mark, H. A. (2014). Effect of buoyancy on heat transfer characteristics of supercritical carbon dioxide in the heating mode. AIAA AVIATION Forum, Atlanta, GA,11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference,16-20. https://doi.org/10.2514/6.2014-3359
Seo, J. W., Kim, Y. H., Kim, D., Choi, Y. D., & Lee, K. J. (2015). Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers. Entropy, 17(5), 3438-3457. https://doi.org/10.3390/e17053438
Seong, G. K., Youho, L., Yoonhan, A., & Jeong, I. (2016). CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application.  Annals of Nuclear Energy, 92, 175–185. https://doi.org/10.1016/j.anucene.2016.01.019
Sheikholeslami, M., & Abd Ali, F. A. M. (2024a). Influence of vortex generator on performance of concentrated solar photovoltaic module in existence of heat sink. Applied Thermal Engineering, 253, 123758. https://doi.org/10.1016/j.applthermaleng.2024.123758
Sheikholeslami, M., & Khalili, Z. (2024b). Simulation for impact of nanofluid spectral splitter on efficiency of concentrated solar photovoltaic thermal system. Sustainable Cities and Society, 101, 10513. https://doi.org/10.1016/j.scs.2023.105139
Sheikholeslami, M., Khalili, Z., Scardi, P., & Ataollahi, N.   (2024c). Environmental and energy assessment of photovoltaic-thermal system combined with a reflector supported by nanofluid filter and a sustainable thermoelectric generator. Journal of Cleaner Production, 438, 140659. https://doi.org/10.1016/j.jclepro.2024.140659
Su-Jong, Y., Piyush, S., & Eung-Soo, K. (2014). Numerical study on crossflow printed circuit heat exchanger for advanced small modular reactors. International Journal of Heat and Mass Transfer, 70, 250-263. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.079
Tae, H. K., Jin, G. K., Sung, H. Y., Hyun, S. P., Moo, H. K., Jae, & Cha, E. (2015). Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle. Nuclear Engineering and Design, 288, 110–118. https://doi.org/10.1016/j.nucengdes.2015.03.013
Thangaraj, J., Senthil Kumar, M., Parvathy, R., Safiah, Z., Rajkumar, R., Hussein, A. Z. AL-bonsrulah., Beena Stanislaus, A., Hari Prasath, J., & Vijayanandh, R. (2023). Design, multi-perspective computational investigations, and experimental correlational studies on conventional and advanced design profile modified hybrid wells turbines patched with piezoelectric vibrational energy harvester devices for coastal regions. Processes, 11(9), 2625.  https://doi.org/10.3390/pr11092625
Usman, M., Ijaz Khan, M., Shah, F., Khan, SU., Ghaffari, A., & Chu, Y. M. (2022). Heat and mass transfer analysis for bioconvective flow of Eyring Powell nanofluid over a Riga surface with nonlinear thermal features. Numerical Methods for Partial Differential Equations. 38, 777–793. https://doi.org/10.1002/num.22696
Veeraperumal Senthil Nathan, J., Pisharam, A., Sourirajan, L., Baskar, S., Gopinath, V., Beena Stanislaus, A., Natrayan, L., Pradesh, S., & Vijayanandh, R. (2025). Operation of advanced flying wing UAV: Examination of structural performance under aberrant pressure and thermal loading conditions with integrated computational study. SAE Technical Paper 2025-28-0060. https://doi.org/10.4271/2025-28-0060.
Wen-xiao, C., Xiong-hui, L., Ting, M., Yi-tung, C., & Qiu-wang, W. (2017). Experimental investigation on sCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels. International Journal of Heat and Mass Transfer. 113, 184–194, https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.059
Wen-xiao, C., Xiong-hui, L., Ting, M., Yi-tung, C., & Qiu-wang, W. (2016). Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins. Applied Thermal Engineering, 114, 1309–1318. https://doi.org/10.1016/j.applthermaleng.2016.11.187
Xinying, C., Jiangfeng, G., Xiulan, H., Keyong, C., Haiyang, & Mengru, X. (2018). Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2. International Journal of Heat and Mass Transfer, 121, 354-366. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.015
Xu, X. Y., Wang, Q. W., Li, L., Ekkad, S. V., & Ma, T. (2015). Thermal-hydraulic performance of different discontinuous fins used in a printed circuit heat exchanger for supercritical CO2. Numerical Heat Transfer, Part A: Application, 68, 1067-1086, https://doi.org/10.1080/10407782.2015.1032028
Yu-Ming, C., Khan, Ijaz Khan, M., Hassan, W., Umar, F., Sami Ullah, K., & Mubbashar, N. (2021). Numerical simulation of squeezing flow Jeffrey nanofluid confined by two parallel disks with the help of chemical reaction: effects of activation energy and microorganism. International Journal of Chemical Reactor Engineering, 19(7), 2021, 717-725. https://doi.org/10.1515/ijcre-2020-0165
Yun-Jie, X., Faisal, S., Ijaz Khan, M., Naveen Kumar, R., Punith Gowda, R. J., Prasannakumara, B. C., Malik, M. Y., & Sami Ullah, K. (2022). New modeling and analytical solution of fourth grade (non-Newtonian) fluid by a stretchable magnetized Riga device. International Journal of Modern Physics C, 33(1), 2250013. https://doi.org/10.1142/S0129183122500139
Zhao, Z., Zhao, K., Jia, D., Jiang, P., & Shen, R. (2017). Numerical investigation on the flow and heat transfer characteristics of supercritical liquefied natural gas in an airfoil fin printed circuit heat exchanger. Energies, 10(11), 1828. https://doi.org/10.3390/en10111828
Zhongchao, Z., Xudong, C., Xiao, Z., Xiaolon M., & Shan, Y. (2020). Experimental and numerical study on thermal‐hydraulic performance of printed circuit heat exchanger for liquefied gas vaporization. Energy Science & Engineering, 8(2), 426–440. https://doi.org/10.1002/ese3.525