Ajinkya, M., Ankush, K. J., Sagar, D. K., Jesus, D. O, Clifford, H., Rucha, B., & Pradip, D. (2016). Modeling and analysis of a printed circuit heat exchanger for supercritical CO
2 power cycle applications.  
Applied Thermal Engineering, 109, Part B., 861-870
.  https://doi.org/10.1016/j.applthermaleng.2016.05.033
                                                                                                                 Aneesh, A. M., Atul, S., Atul, S., & Paritosh, C. (2017). Thermo-Hydraulic performance of zigzag, wavy, and serpentine channel based PCHEs. 
Fluid Mechanics and Fluid Power – Contemporary Research, 507–516. 
https://doi.org/10.1007/978-81-322-2743-4_49
                                                                                                                 Baik, S., Kim, S. G., Lee, J., & Lee, J. I. (2016). Study on CO
2 – water printed circuit heat exchanger performance operating under various CO₂ phases for SCO₂ power cycle application. 
Applied Thermal Engineering, 
113, 1536–1546. 
https://doi.org/10.1016/j.applthermaleng.2016.11.132
                                                                                                                 Dong, E. K., Moo, H. K., Jae, E. C., & Seong, O. K. (2021). Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model. 
Nuclear Engineering and Design, 
238(12), 3269–3276. 
https://doi.org/10.1016/j.nucengdes.2008.08.002
                                                                                                                 Fei, C., Lishen, Z., Xiulan, H., Jufeng, Li., Hang, Z., & Zhigang, L. (2017). Comprehensive performance comparison of airfoil fin PCHEs with NACA series airfoil. 
Nuclear Engineering and Design, 
315, 42-50. 
https://doi.org/10.1016/j.nucengdes.2017.02.014
                                                                                                                 Chhaparwal, G. K., Rahul, Goyal., Ankur, S., Ashish, G., Ankit, D. O., Md Irfanul, H. S., Natrayan, L., Laveet, K., & Sonawane, C. (2024). Numerical and experimental investigation of a solar air heater duct with circular detached ribs to improve its efficiency. Case Studies in Thermal Engineering, 60, 104780.   
https://doi.org/10.1016/j.csite.2024.104780
                                                                                                                 Ganeshkumar, S., Kumar, A., Maniraj, V., Suresh Babu, Y., Alok Kumar, A., Ashish Goyal., Iman Kareem K., Kuldeep, K. S., Prakash, C., Altuijri, R., Ijaz Khan, M., & Ahmed M, H. (2024). Investigations on cooling heat transfer of CO
2-based mixtures in a novel airfoil fin mini-channel at supercritical pressure. 
Arabian Journal of Chemistry, 16(10), 105173. https://doi.org/10.1016/j.arabjc.2023.105173
                                                                                                                 Gopinath, V., Krishna Priya, M., Rajeshwaran, V., Sudhagaran, D., Shyam Sundar, J., Arul Prakash, R., Beena Stanislaus, A., Parvathy, R., Senthil Kumar, M., & Vijayanandh, R.  (2024). Design and Multi-Perspective Investigations on the Aerodynamic Performance Factors of Conventional and Advanced UAV’s Micro Gas-Turbine Engine Nozzles Through Validated CFD Approach. 
International Journal of Fluid Mechanics Research, 
51(2), 15–64. 
https://doi.org/10.1615/InterJFluidMechRes.2024051464
                                                                                                                 Haiyan, Z., Jiangfeng, Guo., Xinying, C., Jingzhi, Z., Xiulan, H., Huzhong, Z., Keyong, C., & Zengxiao H. (2021). Experimental and numerical investigations of thermal-hydraulic characteristics in a novel airfoil fin heat exchanger. 
International Journal of Heat and Mass Transfer, 
175, 
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121333
                                                                                                                 Haiyan, Z., Junfeng, W., Jun, P., Zicheng, H., & Ziyi, S. (2024). Exploring the potential of nano technology: A assessment of nano-scale multi-layered-composite coatings for cutting tool performance. 
Applied Thermal Engineering, 255, 124010. https://doi.org/10.1016/j.applthermaleng.2024.124010
                                                                                                                 In, H. K., & Hee, C. N. (2013). Thermal–hydraulic physical models for a Printed Circuit Heat Exchanger covering He, He–CO
2 mixture, and water fluids using experimental data and CFD. 
Experimental Thermal and Fluid Science,48, 213-221. 
https://doi.org/10.1016/j.expthermflusci.2013.03.003
                                                                                                                 Ishizuka, T., Kato, Y., Muto, Y., Konstantin, N., & Tri Lam, N. (2006). 
Thermal-hydraulic characteristics of a printed circuit heat exchanger in a Supercritical CO2 loop. The 11th International Topical Meetingon Nuclear Reactor Thermal-Hydraulics, NURETH 11th-218. 
https://doi.org/10.1016/j.ijrefrig.2005.11.005
                                                                                                                 Jin, G. K., Tae, H. K., Hyun, S. P., Jae, E. C., & Moo, H. K. (2016). Optimization of airfoil-type PCHE for the recuperator of small-scale Brayton cycle by cost-based objective function. 
Nuclear Engineering Design, 
298, 192–200. 
https://doi.org/10.1016/j.nucengdes.2015.12.012
                                                                                                                 Joo Hyun, P., & Moo Hwan, K. (2024). Experimental investigation on comprehensive thermal-hydraulic performance of supercritical CO
2 in a NACA 0020 airfoil fin printed circuit heat exchanger. 
International Journal of Heat and Mass Transfer, 220, 124947. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124947
                                                                                                                 Karthigairajan, M., Seeniappan, K., Balaji, N., Natrayan, L. Salman, B. S., & Ravi, D. (2025). 
Performance analysis of graphene-coated heat pipe heat exchangers for automobile exhaust cooling and purification. SAE Technical Paper 2025-01-5006. 
https://doi.org/10.4271/2025-01-5006.
                                                                                                                 Kodi, R., Ravuri, M., Gulle, N., Ganteda, C., Khan, S. U., & Ijaz Khan, M. (2022). Hall and ion slip radiative flow of chemically reactive second grade through porous saturated space via perturbation approach. 
Waves in Random and Complex Media, 1–17. 
https://doi.org/10.1080/17455030.2022.2108555
                                                                                                                 Kumar, R., Ravi Kumar, D., Ranjeet Kumar, A., Pankaj S., Anil Singh, Y., Kuldeep K. S., Ijaz Khan, M., & Sana Ben, M. (2023). Current development of carbide free bainitic and retained austenite on wear resistance in high silicon steel. 
Journal of Materials Research and Technology, 
24, 9171-9202. 
https://doi.org/10.1016/j.jmrt.2023.05.067
                                                                                                                 Kun, X., Xiang, Z., Zhihui, X., Fankai, M., Zhuoqun, L., & Xiangkun, J. (2023). Thermal-hydraulic characteristics of carbon dioxide in printed circuit heat exchangers with staggered airfoil fins. 
Processes, 11(8), 2244. https://doi.org/10.3390/pr11082244
                                                                                                                 Lei, L., Ting, M., Xiang, Y, X., Min, Z, & Qiuwang, W. (2014a). Optimization of fin arrangement and channel configuration in an Airfoil Fin PCHE for supercritical CO
2 cycle. 
Applied Thermal Engineering, 
70(1), 867-875. 
https://doi.org/10.1016/j.applthermaleng.2014.05.040
                                                                                                                 Lei, L., Ting, M., Xiang, Y, X., Min, Z, & Qiuwang, W. (2014b). Study on heat transfer and pressure drop performances of airfoil-shaped printed circuit heat exchanger. 
Chemical Engineering Transactions, 
39, 895-900. 
https://doi.org/10.3303/CET1439150
                                                                                                                 Lei, X., Zhang, Q., Zhang, J., & Li, H. (2017). Experimental and numerical investigation of convective heat transfer of supercritical carbon dioxide at low mass fluxes. 
Applied Sciences, 
7(12), 1260. 
https://doi.org/10.3390/app7121260
                                                                                                                 Minghui, C., Xiaodong, S., Richard, N. C., Isaac, S., Vivek, U., & Piyush, S. (2016). Pressuredrop and heat transfer characteristics of a high-temperature printed circuit heat exchanger.
 Applied Thermal Engineering, 108, 1409–1417, 
https://doi.org/10.1016/j.applthermaleng.2016.07.149
                                                                                                                 Sandeep, R. P., Mark, A., & Devesh, R. (2018, March 27-29). 
Thermal-hydraulic performance of discontinuous fin heat exchanger geometries using Supercritical CO2 as the working fluid. The 6th International Supercritical CO
2 Power Cycles Symposium, Pittsburgh, Pennsylvania. 
https://sco2symposium.com/papers2018/heat exchangers/130_Paper.pdf.
                                                                                                                 Pinaa, P., Ferrãoa, J., & Fournierb, C. (2019). 
Study of the printed circuit heat exchanger for supercritical CO2 application. 2nd International Conference on Sustainable Energy and Resource Use in Food Chains, ICSEF2018.DOI: 
https://doi.org/10.1016/j.egypro.2019.02.066
                                                                                                                 Raghunath, K., Ramachandra Reddy, V., Ijaz Khan, M., Sherzod Shukhratovich, A., Habibullah., Boudjemline, A., H., Mohamed Boujelbene., & Yassine, B. (2023). Unsteady magneto-hydro-dynamics flow of Jeffrey fluid through porous media with thermal radiation, Hall current and Soret effects. 
Journal of Magnetism and Magnetic Materials, 582, 171033. 
https://doi.org/10.1016/j.jmmm.2023.171033
                                                                                                                 Raji, A. P., Ranganathan, S., Stanislaus Arputharaj, B., & Vijayanandh, R. (2024). Thermostructural analysis on airfoil fin printed circuit heat exchanger using supercritical CO
2. 
Journal of Thermal Analysis and Calorimetry, 
149(9), 4153–4177. 
https://doi.org/10.1007/s10973-024-12925-y.
                                                                                                                                                                                                                                 Sandeep, R. P., Eric, U., Jacob, A. Mc, F., Devesh, R., & Mark, H. A. (2014). Effect of buoyancy on heat transfer characteristics of supercritical carbon dioxide in the heating mode. AIAA AVIATION Forum, Atlanta, GA,11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference,16-20. 
https://doi.org/10.2514/6.2014-3359
                                                                                                                 Seo, J. W., Kim, Y. H., Kim, D., Choi, Y. D., & Lee, K. J. (2015). Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers. 
Entropy, 
17(5), 3438-3457. 
https://doi.org/10.3390/e17053438
                                                                                                                 Seong, G. K., Youho, L., Yoonhan, A., & Jeong, I. (2016). CFD aided approach to design printed circuit heat exchangers for supercritical CO
2 Brayton cycle application.  
Annals of Nuclear Energy, 92, 175–185. 
https://doi.org/10.1016/j.anucene.2016.01.019
                                                                                                                                                                                                                                 Sheikholeslami, M., & Khalili, Z. (2024b). Simulation for impact of nanofluid spectral splitter on efficiency of concentrated solar photovoltaic thermal system. 
Sustainable Cities and Society, 101, 10513. https://doi.org/10.1016/j.scs.2023.105139
                                                                                                                 Sheikholeslami, M., Khalili, Z., Scardi, P., & Ataollahi, N.   (2024c). Environmental and energy assessment of photovoltaic-thermal system combined with a reflector supported by nanofluid filter and a sustainable thermoelectric generator. 
Journal of Cleaner Production, 438, 140659. 
https://doi.org/10.1016/j.jclepro.2024.140659
                                                                                                                                                                                                                                 Tae, H. K., Jin, G. K., Sung, H. Y., Hyun, S. P., Moo, H. K., Jae, & Cha, E. (2015). Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle. 
Nuclear Engineering and Design, 288, 110–118. 
https://doi.org/10.1016/j.nucengdes.2015.03.013
                                                                                                                 Thangaraj, J., Senthil Kumar, M., Parvathy, R., Safiah, Z., Rajkumar, R., Hussein, A. Z. AL-bonsrulah., Beena Stanislaus, A., Hari Prasath, J., & Vijayanandh, R. (2023). Design, multi-perspective computational investigations, and experimental correlational studies on conventional and advanced design profile modified hybrid wells turbines patched with piezoelectric vibrational energy harvester devices for coastal regions. 
Processes, 11(9), 2625.  
https://doi.org/10.3390/pr11092625
                                                                                                                 Usman, M., Ijaz Khan, M., Shah, F., Khan, SU., Ghaffari, A., & Chu, Y. M. (2022). Heat and mass transfer analysis for bioconvective flow of Eyring Powell nanofluid over a Riga surface with nonlinear thermal features. 
Numerical Methods for Partial Differential Equations. 
38, 777–793. 
https://doi.org/10.1002/num.22696
                                                                                                                 Veeraperumal Senthil Nathan, J., Pisharam, A., Sourirajan, L., Baskar, S., Gopinath, V., Beena Stanislaus, A., Natrayan, L., Pradesh, S., & Vijayanandh, R. (2025). 
Operation of advanced flying wing UAV: Examination of structural performance under aberrant pressure and thermal loading conditions with integrated computational study. SAE Technical Paper 2025-28-0060. 
https://doi.org/10.4271/2025-28-0060.
                                                                                                                 Wen-xiao, C., Xiong-hui, L., Ting, M., Yi-tung, C., & Qiu-wang, W. (2017). Experimental investigation on sCO
2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels. 
International Journal of Heat and Mass Transfer. 
113, 184–194, 
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.059
                                                                                                                 Wen-xiao, C., Xiong-hui, L., Ting, M., Yi-tung, C., & Qiu-wang, W. (2016). Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins. 
Applied Thermal Engineering, 
114, 1309–1318. 
https://doi.org/10.1016/j.applthermaleng.2016.11.187
                                                                                                                 Xinying, C., Jiangfeng, G., Xiulan, H., Keyong, C., Haiyang, & Mengru, X. (2018). Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO
2. 
International Journal of Heat and Mass Transfer, 
121, 354-366. 
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.015
                                                                                                                 Xu, X. Y., Wang, Q. W., Li, L., Ekkad, S. V., & Ma, T. (2015). Thermal-hydraulic performance of different discontinuous fins used in a printed circuit heat exchanger for supercritical CO
2. Numerical Heat Transfer, Part A: Application, 
68, 1067-1086, 
https://doi.org/10.1080/10407782.2015.1032028
                                                                                                                 Yu-Ming, C., Khan, Ijaz Khan, M., Hassan, W., Umar, F., Sami Ullah, K., & Mubbashar, N. (2021). Numerical simulation of squeezing flow Jeffrey nanofluid confined by two parallel disks with the help of chemical reaction: effects of activation energy and microorganism. 
International Journal of Chemical Reactor Engineering, 19(7), 2021, 717-725. 
https://doi.org/10.1515/ijcre-2020-0165
                                                                                                                 Yun-Jie, X., Faisal, S., Ijaz Khan, M., Naveen Kumar, R., Punith Gowda, R. J., Prasannakumara, B. C., Malik, M. Y., & Sami Ullah, K. (2022). New modeling and analytical solution of fourth grade (non-Newtonian) fluid by a stretchable magnetized Riga device. 
International Journal of Modern Physics C, 33(1), 2250013. 
https://doi.org/10.1142/S0129183122500139
                                                                                                                 Zhao, Z., Zhao, K., Jia, D., Jiang, P., & Shen, R. (2017). Numerical investigation on the flow and heat transfer characteristics of supercritical liquefied natural gas in an airfoil fin printed circuit heat exchanger. 
Energies, 
10(11), 1828. 
https://doi.org/10.3390/en10111828
                                                                                                                 Zhongchao, Z., Xudong, C., Xiao, Z., Xiaolon M., & Shan, Y. (2020). Experimental and numerical study on thermal‐hydraulic performance of printed circuit heat exchanger for liquefied gas vaporization. 
Energy Science & Engineering, 8(2), 426–440. 
https://doi.org/10.1002/ese3.525