Experimental Study of Water Jet Atomization using the Schlieren Method

Document Type : Regular Article

Authors

1 School of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, PR China

2 Henan Key Laboratory of Underwater Intelligent Equipment, The 713 Research Institute of CSSC, ZhengZhou 450015, PR China

10.47176/jafm.18.11.3466

Abstract

The interplay between lateral airflow and liquid jet is extensively utilized in many engineering scenarios, including steam-power gas catapult systems. It is of paramount engineering interest for the fragmentation phenomena of jet in crossflow. This study establishes a jet test system and observes the flow characteristics resulting from water jet and crossflow interaction by utilizing the Schlieren method. The effects of inflow and outflow parameters on water jet penetration depth are extensively examined by evaluating parameters such as the gas-to-liquid momentum ratio, nozzle dimensions, and temperature. This study focuses on jet trajectory patterns and establishes mathematical correlations through penetration depth measurements that yield predictive equations for jet behavior.

Keywords

Main Subjects


Chang, J., He, L., Chen, L., Shen, Z., Chuah, L. F., Bokhari, A., Klemeš, J. J., & Han, N. (2022). Numerical simulation of liquid jet atomization in subsonic crossflow. Energy257, 124676. https://doi.org/10.1016/j.energy.2022.124676
Fu, B., Lu, B., Xiao, H., Qin, L., & Li, G. (2024, May). Experimental research on the atomization of transverse liquid jet. Journal of Physics: Conference Series (Vol. 2764, No. 1, p. 012049). IOP Publishing. https://doi.org/10.1088/1742-6596/2764/1/012049
Gao, Z., Liu, Y., Liu, G., & Zhang, Q. (2024). Effect of elevated crossflow temperature on jet primary atomization. Experimental Thermal and Fluid Science, 111254. https://doi.org/10.1016/j.expthermflusci.2024.111254
Huang, L., Zhao, K., & Bennett, G. J. (2024). Numerical study of the trajectory, penetration, and interaction of single and tandem jets in a crossflow using LES. Journal of Aerospace Engineering37(1), 04023090. https://doi.org/10.1061/jaeeez.aseng-5154
Johnson, J. A., Marsh, A. W., Douglas, E. J., Ochs, B. A., Hammack, S. D., Menon, S., & Mazumdar, Y. C. (2024). Digital holography for the study of non-aerated liquid jets in supersonic crossflow. Proceedings of the Combustion Institute40(1-4), 105471. https://doi.org/10.1016/j.proci.2024.105471
Kamin, M., & Khare, P. (2022). The effect of Weber number on spray and vaporization characteristics of liquid jets injected in air crossflow. Journal of Fluids Engineering144(6), 061108. https://doi.org/10.1115/1.4053552
Kasmaiee, S., & Tadjfar, M. (2022). Influence of injection angle on liquid jet in crossflow. International Journal of Multiphase Flow153, 104128. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104128
Kathiravan, B., Niranjan, S., & Sureshkumar, A. (2024). Experimental investigation on performance of an arc transverse injection in a supersonic combustor flow. Journal of Applied Fluid Mechanics17(10), 2169-2180. https://doi.org/10.47176/jafm.17.10.2584
Kouchi, T., Goyne, C. P., Rockwell, R. D., & McDaniel, J. C. (2015). Focusing-schlieren visualization in a dual-mode scramjet. Experiments in Fluids56, 1-14. https://doi.org/10.1007/s00348-015-2081-9
Lax, P. A., & Leonov, S. B. (2024). Application of high-speed self-aligned focusing schlieren system for supersonic flow velocimetry. Aerospace11(8), 603. https://doi.org/10.3390/aerospace11080603
Li, C., Zhou, Y., Chen, H., & Li, Q. (2021). Cross-sectional droplets distribution of a liquid jet in supersonic crossflow. Acta Astronautica186, 109-117. https://doi.org/10.1016/j.actaastro.2021.05.024
Xie, M., Wang, W., Yu, B., He, M., Wu, S., Huang, X., & Liu, H. (2024). Primary breakup model development for trajectory prediction of liquid jets in subsonic crossflow. Physics of Fluids36(3). https://doi.org/10.1063/5.0196515
Yaozhi, Z. H. O. U., Zun, C. A. I., Qinglian, L. I., Chenyang, L. I., Mingbo, S. U. N., & Shaotian, G. O. N. G. (2023). Characteristics of penetration and distribution of a liquid jet in a divergent cavity-based combustor. Chinese Journal of Aeronautics36(12), 139-150. https://doi.org/10.1016/j.cja.2023.03.006
Yeganeh, M., Cheng, Q., Dharamsi, A., Karimkashi, S., Kuusela-Opas, J., Kaario, O., & Larmi, M. (2023). Visualization and comparison of methane and hydrogen jet dynamics using schlieren imaging. Fuel331, 125762. https://doi.org/10.1016/j.fuel.2022.125762
Yu, S., Yin, B., Bi, Q., Jia, H., & Chen, C. (2021). The influence of elliptical and circular orifices on the transverse jet characteristics at supersonic crossflow. Acta Astronautica185, 124-131. https://doi.org/10.1016/j.actaastro.2021.04.038
Zhang, C., Lyu, Y., Jiang, L., & Liu, Z. (2024a). Flow Characteristics of Liquid Jet in Transverse Shear crossflow. Aerospace11(1), 76. https://doi.org/10.3390/aerospace11010076
Zhang, Y., Tian, Y., & Le, J. (2024b). Review of atomization characteristics of liquid jets in crossflow. Physics of Fluids36(2). https://doi.org/10.1063/5.0191630
Zhou, D., Chang, J., Tang, C., & He, L. (2023). Review on research progress in liquid jet in crossflow. International Communications in Heat and Mass Transfer148, 107003. https://doi.org/10.1016/j.icheatmasstransfer.2023.107003
Zhou, Y., Li, C., Cai, Z., Li, Q., Li, Z., Chen, Z., & Sun, M. (2024). Experiments investigation on atomization characteristics of a liquid jet in a supersonic combustor. Physics of Fluids36(4). https://doi.org/10.1063/5.0204890
Zueva, T. S., Weiss, L., Wensing, M., & Garyaev, A. B. (2020, December). Experimental investigation of spray propagation under crossflow conditions with Shadowgraph and Schlieren techniques. Journal of Physics: Conference Series (Vol. 1683, No. 2, p. 022061). IOP Publishing. https://doi.org/10.1088/1742-6596/1683/2/022061