Ali, M. A., & Mondal, P. (2025). Numerical investigation of impinging planar shock wave interaction with axisymmetric slender body.
Journal of Applied Fluid Mechanics,
18(3), 809-820.
https://doi.org/10.47176/jafm.18.3.2768.
Amir, A. F., Yusoff, M. Z., & Yusaf, T (2008). Numerical Simulation of inviscid transient flows in shock tube and its validations.
International Journal of Physical and Mathematical Sciences,
2(7), 409-419.
https://doi.org/10.5281/zenodo.1331555.
Battula, N., Menezes, V., & Hosseini, H. (2016). A miniature shock wave driven micro-jet injector for needle-free vaccine/drug delivery.
Biotechnology and Bioengineering,
113(11), 7.
https://doi.org/ 10.1002/bit.26016
Bayazidi, S., Mojaddam, M., & Mohseni, A. (2023). Performance optimization of nozzle-diffuser piezoelectric micropump with multiple vibrating membranes by design of experiment (DOE) method.
Journal of Applied Fluid Mechanics, 16(7), 1356-1370.
https://doi.org/10.47176/jafm.16.07.1539.
Boulahia, A., Abboudi, S., & Belkhiri, M. (2014). Simulation of viscous and reactive hypersonic flows behaviour in a shock tube facility: TVD schemes and flux limiters application.
Journal of Applied Fluid Mechanics, 7(2), 315-328.
https://doi.org/10.36884/jafm.7.02.19390.
Debnath, S., Saha, A. K., Siddheshwar, P. G., & Roy, A. K. (2019). On dispersion of a reactive solute in a pulsatile flow of a two-fluid model.
Journal of Applied Fluid Mechanics,
12(3), 987-1000.
https://doi.org/10.29252/jafm.12.03.29101
Hankare, P., Agrawala, A., & Menezes, V. (2022). High-Speed Jet Injector for Pharmaceutical Applications.
Journal of Medical Devices,
16(3), 034502.
https://doi.org/10.1115/1.4054549
Henshall, B. D. (1957). Some aspects of the use of shock tubes in aerodynamic research. Aeronautical Research Council Reports and Memoranda, 3044.
Houser, T. A., Sebranek, J. G., Baas, T. J., Thacker, B. J., Nilubol, D., & Thacker, E. L. (2003). Feasibility of transdermal, needleless injections for prevention of pork carcass defects.
Iowa State University Animal Industry Report,
1(1), 1.
https://doi.org/10.1016/j.meatsci.2004.03.016.
Jagadeesh, G., Prakash, G. D., Rakesh, S. G., Allam, U. S., Krishna, M. G., Eswarappa, S. M., & Chakravortty, D. (2011). Needleless vaccine delivery using micro-shock waves.
Clinical and Vaccine Immunology,
18(4), 539-545.
https://doi.org/10.1128/CVI.00494-10
Kanwar, S. S., Dubey, G., Singh, M., & Khanday, G. S. (2015). CFD Analysis of normal shock using shock tube with five species.
International Journal of Science and Research,
4(8), 1900-1905.
https://doi.org/10.21275/25081501.
Kazi, A., Kakde, A. P., Khaire, M. P., & Chhajed, P. N. (2018). Needle free injection device: The painless technology. MIT International Journal of Pharmaceutical Sciences, 4(2), 6.
Kendall, M. A. F. (2002). The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system.
Shock Waves,
12(1), 23-30.
https://doi.org/10.1007/s001930200126
Kim, B., Lee, S. B., Lee, J., Cho, S., Park, H., Yeom, S., & Park, S. H. (2012). A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber.
International Journal of Precision Engineering and Manufacturing,
13(5), 759-764.
https://doi.org/10.1007/s12541-012-0099-y
Kiyama, A., Endo, N., Kawamoto, S., Katsuta, C., Oida, K., Tanaka, A., & Tagawa, Y. (2019). Visualization of penetration of a high-speed focused microjet into gel and animal skin.
Journal of Visualization,
22(3), 449-457.
https://doi.org/10.1007/s12650-019-00547-8
Kjellander, M., Tillmark, N., & Apazidis, N. (2010). Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects.
Physics of Fluids,
22(11), 116102.
https://doi.org/10.1063/1.3500684
Liu, Y., & Kendall, M. A. F. (2007). Optimization of a jet‐propelled particle injection system for the uniform transdermal delivery of drug/vaccine.
Biotechnology and Bioengineering,
97(5), 1300-1308.
https://doi.org/10.1002/bit.21324
Menezes, V., Kumar, S., & Takayama, K. (2009). Shock wave driven liquid microjets for drug delivery.
Journal of Applied Physics,
106(8), 086102.
https://doi.org/10.1063/1.3245320
Mukhambetiyar, A., Nazarbayev University, Jaeger, M., University of Tasmania, Adair, D., & Nazarbayev University. (2017). CFD modelling of flow characteristics in micro shock tubes.
Journal of Applied Fluid Mechanics, 10(4), 1061–1070.
https://doi.org/10.18869/acadpub.jafm.73.241.27474.
Nakayama, H., Portaro, R., Kiyanda, C. B., & Ng, H. D. (2016). CFD modeling of high speed liquid jets from an air-powered needle-free injection system.
Journal of Mechanics in Medicine and Biology,
16(04), 1650045.
https://doi.org/10.1142/S0219519416500457
Nanda, S. R., Agarwal, S., Kulkarni, V., & Sahoo, N. (2017). Shock Tube as an impulsive application device.
International Journal of Aerospace Engineering,
2017, 1–12.
https://doi.org/10.1155/2017/2010476
Portaro, R., Sadek, J., Xu, H., & Ng, H. D. (2019). Controlled release using gas detonation in needle-free liquid jet injections for drug delivery.
Applied Sciences,
9(13), 2712.
https://doi.org/10.3390/app9132712
Rakesh, S. G., Gnanadhas, D. P., Allam, U. S., Nataraja, K. N., Barhai, P. K., Jagadeesh, G., & Chakravortty, D. (2012). Development of micro-shock wave assisted dry particle and fluid jet delivery system.
Applied Microbiology and Biotechnology,
96(3), 647-662.
https://doi.org/10.1007/s00253-012-4196-8
Rasel, M. A. I., & Kim, H. D. (2013). A numerical study of the gas and particle dynamics in a needle free drug delivery device.
Journal of Mechanical Science and Technology, 27, 3103-3112.
https://doi.org/10.1007/s12206-013-0829-9
Rathakrishnan, E. (2020). Gas dynamics. PHI Learning Pvt. Ltd.
Schramm, J., & Mitragotri, S. (2002). Transdermal drug delivery by jet injectors: Energetics of jet formation and penetration.
Pharmaceutical Research,
19, 1673-1679.
https://doi.org/10.1023/A:1020753329492.
Shankar, S. K., Kawai, S., & Lele, S. K. (2011). Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder.
Physics of Fluids,
23(2).
https://doi.org/10.1063/1.3553282.
Wang, Y., Yue, L., Hu, L., & Wang, J. (2021). Needle‐free jet injectors’ geometry design and drug diffusion process analysis.
Applied Bionics and Biomechanics,
2021(1), 5199278.
https://doi.org/10.1155/2021/5199278
Wang, Z., Song, D., Wang, J., Xiong, L., Shi, T., Zhang, C., Di, L., Zhang, C., Zhang, Y., & Li, H. (2022). Simulation and experimental study on the influence of needle-free jet injection nozzle structure on injection performance.
Journal of Drug Delivery Science and Technology,
68, 103043.
https://doi.org/10.1016/j.jddst.2021.103043.
Yu, J., Zhang, X. P., Wang, J., Hao, Y., & Mao, H. B. (2025). Study on the shock wave characteristics of spherical and cylindrical explosives in near-field underwater explosion.
Journal of Applied Fluid Mechanics,
18(4), 892-903.
https://doi.org/10.47176/jafm.18.4.2960.
Zhang, G., & Kim, H. D. (2015). Numerical simulation of shock wave and contact surface propagation in micro shock tubes.
Journal of Mechanical Science and Technology,
29(4), 1689-1696.
https://doi.org/0.1007/s12206-015-0341-5
Zhang, G., Jin, Y.Z., Setoguchi, T. and Kim, H.D. (2016). Study on drug powder acceleration in a micro shock tube.
Journal of Mechanical Science and Technology,
30, 4007-4013.
https://doi.org/10.1007/s12206-016-0813-2.