Performance Enhancement of Shock Wave Assisted Drug Delivery Based on Converging Shock Tube Design

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, National Institute of Technology Saitsohpen, Sohra-793108, Meghalaya, India

2 Department of Mechanical Engineering, National Institute of Technology Warangal, Telangana- 506004, India

10.47176/jafm.18.11.3364

Abstract

The development of needleless drug delivery systems (NDDS) has garnered a promising alternative to traditional needle-based methods. This work emphasizes an effort to utilize shock waves for NDDS. The NDDS consists of a shock tube and a delivery nozzle separated by a solid hyper-elastic membrane (HEM). For this purpose, consideration is given to a converging shock tube (CST) to analyze the shock dynamics and enhance the pressure intensity near the HEM. The fluid-structure interaction enables the energy transfer from the shock wave to the membrane, resulting in elastic deformation and propelling liquid medicines through the delivery nozzle. ANSYS Fluent 2023 is employed to model the 2-D axisymmetric domain of NDDS to investigate the impact of different parameters and factors on converging channel geometry. The numerical model is validated using empirical relations and previously published experimental data. In addition, COMSOL Multiphysics is used to examine the dynamic response of the membrane and capture drug ejection velocity. The analysis culminated in the development of a novel ST geometry featuring a converging design with flat segment for better performance. The study resulted in the use of a 60 mm converging channel with 4.76o inclination followed by a 30 mm flat segment. The modification shows almost 2.5 times enhancement in reflected pressure compared to the plane shock tube and approx. 1.3 times compared to CST. Furthermore, it is revealed that the shock strength (P2/P1) and reflected shock pressure (P5) significantly affect the ejection velocity. Ultimately, the system achieved an enhanced reflected pressure and improved drug ejection velocity of 99 m/s.

Keywords

Main Subjects


Ali, M. A., & Mondal, P. (2025). Numerical investigation of impinging planar shock wave interaction with axisymmetric slender body. Journal of Applied Fluid Mechanics18(3), 809-820. https://doi.org/10.47176/jafm.18.3.2768.
Amir, A. F., Yusoff, M. Z., & Yusaf, T (2008). Numerical Simulation of inviscid transient flows in shock tube and its validations. International Journal of Physical and Mathematical Sciences2(7), 409-419. https://doi.org/10.5281/zenodo.1331555.
Battula, N., Menezes, V., & Hosseini, H. (2016). A miniature shock wave driven micro-jet injector for needle-free vaccine/drug delivery. Biotechnology and Bioengineering, 113(11), 7. https://doi.org/ 10.1002/bit.26016
Bayazidi, S., Mojaddam, M., & Mohseni, A. (2023). Performance optimization of nozzle-diffuser piezoelectric micropump with multiple vibrating membranes by design of experiment (DOE) method. Journal of Applied Fluid Mechanics, 16(7), 1356-1370. https://doi.org/10.47176/jafm.16.07.1539.
Boulahia, A., Abboudi, S., & Belkhiri, M. (2014). Simulation of viscous and reactive hypersonic flows behaviour in a shock tube facility: TVD schemes and flux limiters application. Journal of Applied Fluid Mechanics, 7(2), 315-328. https://doi.org/10.36884/jafm.7.02.19390.
Debnath, S., Saha, A. K., Siddheshwar, P. G., & Roy, A. K. (2019). On dispersion of a reactive solute in a pulsatile flow of a two-fluid model. Journal of Applied Fluid Mechanics12(3), 987-1000. https://doi.org/10.29252/jafm.12.03.29101
Hankare, P., Agrawala, A., & Menezes, V. (2022). High-Speed Jet Injector for Pharmaceutical Applications. Journal of Medical Devices, 16(3), 034502. https://doi.org/10.1115/1.4054549
Henshall, B. D. (1957). Some aspects of the use of shock tubes in aerodynamic research. Aeronautical Research Council Reports and Memoranda, 3044.
Houser, T. A., Sebranek, J. G., Baas, T. J., Thacker, B. J., Nilubol, D., & Thacker, E. L. (2003). Feasibility of transdermal, needleless injections for prevention of pork carcass defects. Iowa State University Animal Industry Report, 1(1), 1. https://doi.org/10.1016/j.meatsci.2004.03.016.
Jagadeesh, G., Prakash, G. D., Rakesh, S. G., Allam, U. S., Krishna, M. G., Eswarappa, S. M., & Chakravortty, D. (2011). Needleless vaccine delivery using micro-shock waves. Clinical and Vaccine Immunology, 18(4), 539-545. https://doi.org/10.1128/CVI.00494-10
Kanwar, S. S., Dubey, G., Singh, M., & Khanday, G. S. (2015). CFD Analysis of normal shock using shock tube with five species. International Journal of Science and Research, 4(8), 1900-1905. https://doi.org/10.21275/25081501.
Kazi, A., Kakde, A. P., Khaire, M. P., & Chhajed, P. N. (2018). Needle free injection device: The painless technology. MIT International Journal of Pharmaceutical Sciences, 4(2), 6.
Kendall, M. A. F. (2002). The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system. Shock Waves, 12(1), 23-30. https://doi.org/10.1007/s001930200126
Kim, B., Lee, S. B., Lee, J., Cho, S., Park, H., Yeom, S., & Park, S. H. (2012). A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 13(5), 759-764. https://doi.org/10.1007/s12541-012-0099-y
Kiyama, A., Endo, N., Kawamoto, S., Katsuta, C., Oida, K., Tanaka, A., & Tagawa, Y. (2019). Visualization of penetration of a high-speed focused microjet into gel and animal skin. Journal of Visualization, 22(3), 449-457. https://doi.org/10.1007/s12650-019-00547-8
Kjellander, M., Tillmark, N., & Apazidis, N. (2010). Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects. Physics of Fluids, 22(11), 116102. https://doi.org/10.1063/1.3500684
Lewin, S., & Skews, B. (2020). Propagation of shock waves of varying curvature. Journal of Applied Fluid Mechanics, 14(3), 691-701. https://doi.org/10.47176/jafm.14.03.31956.
Liu, Y., & Kendall, M. A. F. (2007). Optimization of a jet‐propelled particle injection system for the uniform transdermal delivery of drug/vaccine. Biotechnology and Bioengineering, 97(5), 1300-1308. https://doi.org/10.1002/bit.21324
Menezes, V., Kumar, S., & Takayama, K. (2009). Shock wave driven liquid microjets for drug delivery. Journal of Applied Physics, 106(8), 086102. https://doi.org/10.1063/1.3245320
Mukhambetiyar, A., Nazarbayev University, Jaeger, M., University of Tasmania, Adair, D., & Nazarbayev University. (2017). CFD modelling of flow characteristics in micro shock tubes. Journal of Applied Fluid Mechanics, 10(4), 1061–1070. https://doi.org/10.18869/acadpub.jafm.73.241.27474.
Muritala, A. O., Skews, B. W., & Craig, L. (2015). A study of the complex flow features behind a diffracted shock wave on a convex curved wall. Journal of Applied Fluid Mechanics8(4), 667-672. https://doi.org/10.18869/acadpub.jafm.67.223.20428.
Nakayama, H., Portaro, R., Kiyanda, C. B., & Ng, H. D. (2016). CFD modeling of high speed liquid jets from an air-powered needle-free injection system. Journal of Mechanics in Medicine and Biology, 16(04), 1650045. https://doi.org/10.1142/S0219519416500457
Nanda, S. R., Agarwal, S., Kulkarni, V., & Sahoo, N. (2017). Shock Tube as an impulsive application device. International Journal of Aerospace Engineering, 2017, 1–12. https://doi.org/10.1155/2017/2010476
Park, J. H., Allen, M. G., & Prausnitz, M. R. (2006). Polymer microneedles for controlled-release drug delivery. Pharmaceutical Research, 23, 1008-1019. https://doi.org/10.1007/s11095-006-0028-9
Portaro, R., Sadek, J., Xu, H., & Ng, H. D. (2019). Controlled release using gas detonation in needle-free liquid jet injections for drug delivery. Applied Sciences, 9(13), 2712. https://doi.org/10.3390/app9132712
Rakesh, S. G., Gnanadhas, D. P., Allam, U. S., Nataraja, K. N., Barhai, P. K., Jagadeesh, G., & Chakravortty, D. (2012). Development of micro-shock wave assisted dry particle and fluid jet delivery system. Applied Microbiology and Biotechnology, 96(3), 647-662. https://doi.org/10.1007/s00253-012-4196-8
Rane, Y. S., & Marston, J. O. (2020). Computational study of fluid flow in tapered orifices for needle-free injectors. Journal of Controlled Release, 319, 382-396. https://doi.org/10.1016/j.jconrel.2020.01.013
Rane, Y. S., & Marston, J. O. (2021). Transient modelling of impact driven needle-free injectors. Computers in Biology and Medicine, 135, 104586. https://doi.org/10.1016/j.compbiomed.2021.104586
Rasel, M. A. I., & Kim, H. D. (2013). A numerical study of the gas and particle dynamics in a needle free drug delivery device. Journal of Mechanical Science and Technology, 27, 3103-3112. https://doi.org/10.1007/s12206-013-0829-9
Rathakrishnan, E. (2020). Gas dynamics. PHI Learning Pvt. Ltd.
Rathod, V., & Mahapatra, D. (2017). Optimization of a diaphragm for a micro-shock tube-based drug delivery method. Bioengineering, 4(4), 24. https://doi.org/10.3390/bioengineering4010024
Schramm, J., & Mitragotri, S. (2002). Transdermal drug delivery by jet injectors: Energetics of jet formation and penetration. Pharmaceutical Research, 19, 1673-1679. https://doi.org/10.1023/A:1020753329492.
Shankar, S. K., Kawai, S., & Lele, S. K. (2011). Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Physics of Fluids, 23(2). https://doi.org/10.1063/1.3553282.
Singh, G. P., Sharma, J. D., Arora, R., & Sandhu, I. S. (2020). CFD analysis of shock tube for blast impact testing. Materials Today: Proceedings, 28, 1872-1878. https://doi.org/10.1016/j.matpr.2020.05.294.
Trimzi, M. A., & Ham, Y. B. (2021). A needle-free jet injection system for controlled release and repeated biopharmaceutical delivery. Pharmaceutics, 13(11), 1770. https://doi.org/10.3390/pharmaceutics13111770.
Wang, L., & Kong, D. (2023). Study on pressure reconstruction method of explosion shock wave. Journal of Applied Fluid Mechanics16(7), 1442-1454. https://doi.org/10.47176/jafm.16.07.1690.
Wang, Y., Yue, L., Hu, L., & Wang, J. (2021). Needle‐free jet injectors’ geometry design and drug diffusion process analysis. Applied Bionics and Biomechanics, 2021(1), 5199278. https://doi.org/10.1155/2021/5199278
Wang, Z., Song, D., Wang, J., Xiong, L., Shi, T., Zhang, C., Di, L., Zhang, C., Zhang, Y., & Li, H. (2022). Simulation and experimental study on the influence of needle-free jet injection nozzle structure on injection performance. Journal of Drug Delivery Science and Technology, 68, 103043. https://doi.org/10.1016/j.jddst.2021.103043.
Wijaya, U., Soegiarso, R., & Tavio. (2019). Mechanical properties of Indonesian hyperelastic low-grade rubber for low-cost base isolator. MATEC Web of Conferences, 276, 01017. https://doi.org/10.1051/matecconf/201927601017.
Yu, J., Zhang, X. P., Wang, J., Hao, Y., & Mao, H. B. (2025). Study on the shock wave characteristics of spherical and cylindrical explosives in near-field underwater explosion. Journal of Applied Fluid Mechanics18(4), 892-903. https://doi.org/10.47176/jafm.18.4.2960.
Zhang, G., & Kim, H. D. (2015). Numerical simulation of shock wave and contact surface propagation in micro shock tubes. Journal of Mechanical Science and Technology, 29(4), 1689-1696. https://doi.org/0.1007/s12206-015-0341-5
Zhang, G., Jin, Y.Z., Setoguchi, T. and Kim, H.D. (2016). Study on drug powder acceleration in a micro shock tube. Journal of Mechanical Science and Technology, 30, 4007-4013. https://doi.org/10.1007/s12206-016-0813-2.
Zhang, G., Setoguchi, T., & Kim, H. D. (2015). Numerical simulation of flow characteristics in micro shock tubes. Journal of Thermal Science, 24(3), 246-253. https://doi.org/10.1007/s11630-015-0780-4