Improving Flow Stability of a Centrifugal Compressor by Regulating Energy Transfer Among Dynamic Modes

Document Type : Regular Article

Authors

1 School of Mechanical Engineering, Tianjin University, 300350 Tianjin, China

2 National Key Laboratory of Vehicle Power System, Tianjin University, 300350 Tianjin, China

3 School of Mechanical Engineering, Tianjin University of Commerce, 300134 Tianjin, China

10.47176/jafm.18.11.3433

Abstract

Compressor flow instability significantly constrains the development of aviation power systems. Improving flow stability of compressor is usually challenging without deteriorating aerodynamic performances. In this study, a new method for improving compressor flow stability is proposed based on regulating energy transfer among flow field dynamic modes. Firstly, dynamic mode decomposition (DMD) is conducted on the compressor flow field to identify the dominant dynamic modes and the corresponding evolution characteristics. It is found that the BPF (Blade-Passing-Frequency) mode and its harmonics represent the rotor-stator interactions of the flow field, and they are named as inherent mode. The 0.11RF (Rotor Frequency) mode, which is caused by large-scale low-frequency disturbances downstream of the rotor, characterizes periodic fluctuations of the compressor flow field, and it is recognized as characteristic mode. DMD analyses on the compressor throttling process reveals that the essential feature of compressor flow instability is the energy transfer from the inherent mode to the characteristic mode. Then, an optimization method is proposed for improving flow stability by maximizing inherent mode energy and minimizing characteristic mode energy. Optimization based on this approach has resulted in a 25.4% increase in the energy-ratio of the inherent mode at the compressor near-stall condition, alongside a 51.84% reduction in the energy-ratio of the characteristic mode. The compressor stall flow rate is decreased by 8.45% and the choke flow rate is increased by 5.11%, and the overall aerodynamic performances are maintained.

Keywords

Main Subjects


Ansys. (2011). ANSYS CFX-solver theory guide. ANSYS Inc.
Bagheri, S. (2013). Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics726, 596-623. https://doi.org/10.1017/jfm.2013.249
Bitikofer, C., Schoen, M. P., Li, J. C., & Lin, F. (2017). Characteristic Moore-Greitzer model parameter identification for a one stage axial compressor system. 2017 American Control Conference (ACC), (pp. 164-169). IEEE. https://doi.org/10.23919/ACC.2017.7962948
Broatch, A., García-Tíscar, J. O. R. G. E., Roig, F., & Sharma, S. (2019). Dynamic mode decomposition of the acoustic field in radial compressors. Aerospace Science and Technology90, 388-400. https://doi.org/10.1016/j.ast.2019.05.015
Cameron, J. D., Bennington, M. A., Ross, M. H., Morris, S. C., Du, J., Lin, F., & Chen, J. (2013). The influence of tip clearance momentum flux on stall inception in a high-speed axial compressor. Journal of Turbomachinery, 135(5), 051005. https://doi.org/10.1115/1.4007800
Cheng, F., Sun, D., Dong, X., & Sun, X. (2017). Prediction of stall inception in multi-stage compressors based on an eigenvalue approach. Science China Technological Sciences60(8), 1132-1143. https://doi.org/10.1007/s11431-016-0355-3
Cumpsty, N. A. (2004). Compressor aerodynamics. Krieger Publishing.
Day, I. J. (2016). Stall, surge, and 75 years of research. Journal of Turbomachinery, 138(1), 011001. https://doi.org/10.1115/1.4031473
Dong, X., Sun, D., Li, F., & Sun, X. (2018). Stall margin enhancement of a novel casing treatment subjected to circumferential pressure distortion. Aerospace Science and Technology73, 239-255. https://doi.org/10.1016/j.ast.2017.12.005
Fu, L., Hu, C., Yang, C., Bao, W., & Zhou, M (2020). Vortex trajectory prediction and mode analysis of compressor stall with strong non-uniformity. Aerospace Science and Technology105, 106031. https://doi.org/10.1016/j.ast.2020.106031
Fujisawa, N., Inui, T., & Ohta, Y. (2019). Evolution process of diffuser stall in a centrifugal compressor with vaned diffuser. Journal of Turbomachinery141(4), 041009. https://doi.org/10.1115/1.4042249
Grondin, J., Trébinjac, I., & Rochuon, N. (2018). Rotating instabilities versus rotating stall in a high-speed centrifugal compressor. Turbo Expo: Power for Land, Sea, and Air, V02BT44A025. https://doi.org/10.1115/GT2018-76916
Hong, S., Huang, G., Yang, Y., & Liu, Z. (2018). Introduction of DMD method to study the dynamic structures of a three-dimensional centrifugal compressor with and without flow control. Energies, 11(11), 3098. https://doi.org/10.3390/en11113098
Hosseinimaab, S. M., & Tousi, A. M. (2022). Optimizing the performance of a single-shaft micro gas turbine engine by modifying its centrifugal compressor design. Energy Conversion and Management, 271, 116245. https://doi.org/10.1016/j.enconman.2022.116245
Hu, C., Yang, C., Yi, W., Hadzic, K., Xie, L., Zou, R., & Zhou, M. (2020a). Numerical investigation of centrifugal compressor stall with compressed dynamic mode decomposition. Aerospace Science and Technology106, 106153. https://doi.org/10.1016/j.ast.2020.106153
Hu, C., Yang, C., Yi, W., Zheng, S., Zou, R., & Zhou, M.  (2020b). Influence of shroud profiling on the compressor diffuser: Frozen-eddy approach and mode decomposition. International Journal of Mechanical Sciences178, 105623. https://doi.org/10.1016/j.ijmecsci.2020.105623
Huang, S., Yang, C., Han, G., Zhao, S., & Lu, X. (2020). Multipoint design optimization for a controlled diffusion airfoil compressor cascade. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(11), 2143-2159. https://doi.org/10.1177/0954406220904
Kou, J., & Zhang, W. (2017). An improved criterion to select dominant modes from dynamic mode decomposition. European Journal of Mechanics-B/Fluids62, 109-129. https://doi.org/10.1016/j.euromechflu.2016.11.015
Li, C. Y., Chen, Z., Zhang, X., Tim, K. T., & Lin, C. (2023). Koopman analysis by the dynamic mode decomposition in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics232, 105295. https://doi.org/10.1016/j.jweia.2022.105295
Li, C., Bin, G., Li, J., & Liu, Z. (2021). Study on the erosive wear of the gas-solid flow of compressor blade in an aero-turboshaft engine based on the Finnie model. Tribology International, 163, 107197. https://doi.org/10.1016/j.triboint.2021.107197
Li, X., Liu, Z., Zhao, M., Zhao, Y., & He, Y. (2022). Stability improvement without efficiency penalty of a transonic centrifugal compressor by casing treatment and impeller/diffuser coupling optimization. Aerospace Science and Technology, 127, 107685. https://doi.org/10.1016/j.ast.2022.107685
Liu, X., Sun, D., & Sun, X. (2014). Basic studies of flow-instability inception in axial compressors using eigenvalue method. Journal of Fluids Engineering136(3), 644-649. https://doi.org/10.1115/1.4026417
Liu, X., Zhou, Y., Sun, X., & Sun, D. (2015). Calculation of flow instability inception in high speed axial compressors based on an eigenvalue theory. Journal of Turbomachinery137(6), 061007. https://doi.org/10.1115/1.4028768
Liu, Z., Xie, X., & Li, X. (2024). A coupling optimisation strategy for improving flow stability and aerodynamic performances of turbocharger centrifugal compressors. International Journal of Automotive Technology, 1-15. https://doi.org/10.1007/s12239-024-00185-6.
Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics656, 5-28. https://doi.org/10.1017/S0022112010001217
Shu, M., Yang, M., Deng, K., Zheng, X., & Martinez-Botas, R. F. (2018). Performance analysis of a centrifugal compressor based on circumferential flow distortion induced by volute. Journal of Engineering for Gas Turbines and Power140(12), 122603. https://doi.org/10.1115/1.4040681
Stein, T., Leitner, M. W., & Staudacher, S. (2025). Effect of leading edge erosion on the tip leakage flow in a compressor cascade. Journal of Turbomachinery, 147(8), 081015. https://doi.org/10.1115/1.4067462
Sun, X., Liu, X., Hou, R., & Sun, D. (2013). A general theory of flow-instability inception in turbomachinery. AIAA Journal51(7), 1675-1687. https://doi.org/10.2514/1.J052186
Taira, K., Brunton, S. L., Dawson, S. T., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V., & Ukeiley, L. S. (2017). Mode analysis of fluid flows: An overview. AIAA Journal55(12), 4013-4041. https://doi.org/10.2514/1.J056060
Vo, H. D., Tan, C. S., & Greitzer, E. M. (2005, January). Criteria for spike initiated rotating stall. Turbo Expo: Power for Land, Sea, and Air (Vol. 47306, pp. 155-165). https://doi.org/10.1115/GT2005-68374
Wilson, K. (2024). Modeling and control design for one stage axial flow compressor. Idaho State University.
Wu, Z., Brunton, S. L., & Revzen, S. (2021). Challenges in dynamic mode decomposition. Journal of the Royal Society Interface, 18(185), 20210686. https://doi.org/10.1098/rsif.2021.0686
Xu, L., Liu, Z., Li, X., Zhao, M., Zhao, Y., & Zhou, T.  (2023). Dynamic mode characteristics of flow instabilities in a centrifugal compressor impeller. Aerospace Science and Technology142, 108707. https://doi.org/10.1016/j.ast.2023.108707
Xu, R., Sun, D., Dong, X., Li, F., Sun, X., & Li, J. (2019). Application of stall warning approach with stall precursor-suppressed casing treatment on a two-stage compressor. Journal of Thermal Science, 28, 862-874. https://doi.org/10.1007/s11630-019-1186-5
Xu, D., Dong, X., Xu, R., Li, J., Sun, D., & Sun, X. (2022). Research progress of adaptive control methods for compressor flow stability. Chinese Journal of Theoretical and Applied Mechanics, 54 (3), 559-576. https://doi.org/10.6052/0459-1879-21-560
Xue, X., & Tong, W. (2019). Experimental and computational analysis of the unstable flow structure in a centrifugal compressor with a vaneless diffuser. Chinese Journal of Mechanical Engineering32(1), 1-13. https://doi.org/10.1186/s10033-019-0379-x
Xue, X., Wang, T., Shao, Y., Yang, B., & Gu, C. (2019). Experimental and numerical analysis of different unsteady modes in a centrifugal compressor with variable vaned diffuser. Journal of Fluids Engineering141(10), 101106. https://doi.org/10.1115/1.4043273
Yang, M., Shu, M., Yang, B., Martinez-Botas, R., & Deng, K. (2022). Unsteady response of performance for centrifugal compressor under pulsating backpressure condition. Aerospace Science and Technology, 126, 107589. https://doi.org/10.1016/j.ast.2022.107589
Zamiri, A., Lee, B. J., & Chung, J. T. (2017). Numerical evaluation of transient flow characteristics in a transonic centrifugal compressor with vaned diffuser. Aerospace Science and Technology70, 244-256. https://doi.org/10.1016/j.ast.2017.08.003
Zhang, M., Wu, W., & Zhou, C. (2023). Numerical model of predicting surge boundaries in high-speed centrifugal compressors. Aerospace Science and Technology141, 108518. https://doi.org/10.1016/j.ast.2023.108518
Zhang, Y., Lu, X., Zhang, Y., Zhang, Z., Dong, X., & Han, G. (2022). Stall behavior in an ultrahigh-pressure-ratio centrifugal compressor: Backward-traveling rotating stall. Journal of Turbomachinery144(10), 101010. https://doi.org/10.1115/1.4050918
Zhao, Y., Liu, Z., Fu, L., Zhao, M., & Li, X. (2023). Redesign of a turbocharger compressor based on multi-component full-passage optimization. Aerospace Science and Technology, 142, 108644. https://doi.org/10.1016/j.ast.2023.108644
Zhou, T., Liu, Z., Li, X., Zhao, M., Zhao, Y., & Xu, L. (2025). Unsteady flow mechanisms of the stability improvement for an optimized compressor. Journal of Applied Fluid Mechanics, 18(4), 919-932. 10.47176/jafm.18.4.3056
Zhu, X., Hu, C., Yang, X., & Du, Z. (2019). Dynamic mode decomposition analysis of the unsteady flow in a centrifugal compressor volute. Journal of Aerospace Engineering32(1), 04018136. https://doi.org/10.1061/(ASCE)AS.1943-5525.00009