Plasma Plume Expansion into Ambient Air: OpenFOAM Simulation Using rhoCentralFoam, sonicFoam, twoPhaseEulerFoam Solvers

Document Type : Regular Article

Authors

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, 23284, USA

10.47176//jafm.2025.8912.3664

Abstract

The dynamics of laser-produced plasma plume expansion involves complex interactions between the ablated material and ambient air. This study investigates and compares the performance of three OpenFOAM solvers, namely twoPhaseEulerFoam (tPEF), rhoCentralFoam (rCF), and sonicFoam (sF) using an identical initial setup of geometry and parameters. The primary objective of this study is to affirm the applicability and reliability of the tPEF solver in modeling the laser-produced plasmas for multispecies cases. The focus is on the evaluating the tPEF solver’s ability to simulate plasma plume dynamics under atmospheric air pressure. Propagation of plasma shockwave, mesh generation, initial and boundary conditions, and hydrodynamics of single- and multi-phase equations are analyzed. Critical flow variables, such as pressure, velocity, temperature, and density, were monitored spatially and temporally to evaluate the solver performance. The simulation results demonstrate that tPEF produces stable and reliable results that align with physical expectations and previously published data. It was found to be particularly effective in capturing the plume’s hydrodynamic features, including multi-species behavior and interaction with the ambient environment. The findings affirm applicability of tPEF for modeling laser-induced plasma plumes, especially in capturing complex fluid dynamics and species evolution. This study will provide computational foundations essential for specific engineering applications involving pulsed laser ablation of multi-component materials.

Keywords

Main Subjects


Amidu, M. A., Addad, Y., & Riahi, M. (2020). A hybrid multiphase flow model for the prediction of both low and high void fraction nucleate boiling regimes. Applied Thermal Engineering, 178, 115625. https://doi.org/10.1016/j.applthermaleng.2020.115625
Amoruso, S., Toftmann, B., Schou, J., Velotta, R., & Wang, X. (2004). Diagnostics of laser ablated plasma plumes. Thin Solid Films, 453, 562–572. https://doi.org/10.1016/j.tsf.2003.11.137
Anabitarte, F., Cobo, A., & Lopez-Higuera, J. M. (2012). Laser-induced breakdown spectroscopy: Fundamentals, applications, and challenges. International Scholarly Research Notices, 2012. https://doi.org/10.5402/2012/285240
Ayachit, U. (2015). The paraview guide: A parallel visualization application. Kitware, Inc. https://dl.acm.org/doi/book/10.5555/2789330
Bai, X., Cao, F., Motto-Ros, V., Ma, Q., Chen, Y., & Yu, J. (2015). Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study. Spectrochimica Acta Part B: Atomic Spectroscopy, 113, 158–166. http://dx.doi.org/10.1016/j.sab.2015.09.023
Bäuerle, D., & Bäuerle, D. (2011). Surface melting. Laser Processing and Chemistry, 177–198. https://doi.org/10.1007/978-3-642-17613-5_10
Cappelli, D. (2018). A detailed description of reactngTwoPhaseEulerFoam focussing on the links between mass and heat transfer at the phase interface. Proceedings of CFD with OpenSource Software. Nilsson. H. http://dx.doi.org/10.17196/OS_CFD#YEAR_2018
Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y. (2014). OpenFOAM for computational fluid dynamics. Notices of the AMS, 61(4), 354–363. http://dx.doi.org/10.1090/noti1095
Chrisey, D. B., & Hubler, G. K. (1994). Pulsed laser deposition of thin films.
Chryssolouris, G., Sheng, P., & Choi, W. (1990). Three- dimensional laser machining of composite materials. Journal of Engineering Materials and Technology,112(4), 387-392. https://doi.org/10.1115/1.2903347
Dawood, M. S., Hamdan, A., & Margot, J. (2015). Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas. AIP Advances, 5(10). https://doi.org/10.1063/1.4935100
Eliceiri, M., & Grigoropoulos, C. P. (2021). Comparison of transient absorption of laser ablation plasma with fundamental plasma absorption relations. Applied Physics A, 127(7), 507. https://doi.org/10.1007/s00339-021-04648-w
Fazio, E., Neri, F., Ponterio, R. C., Trusso, S., Tommasini, M., & Ossi, P. M. (2014). laser controlled synthesis of noble metal nanoparticle arrays for low concentration molecule recognition. Micromachines, 5(4), Article 4. https://doi.org/10.3390/mi5041296
Finko, M. S., & Curreli, D. (2018). Simulation of uranium plasma plume dynamics in atmospheric oxygen produced via femtosecond laser ablation. Physics of Plasmas, 25(8), 083112. https://doi.org/10.1063/1.5034470
Freeman, J., Harilal, S., & Hassanein, A. (2011). Enhancements of extreme ultraviolet emission using prepulsed Sn laser-produced plasmas for advanced lithography applications. Journal of Applied Physics, 110(8). https://doi.org/10.1063/1.3647779
Ghazanfari, V., Salehi, A. A., Keshtkar, A. R., Shadman, M. M., & Askari, M. H. (2019). Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows. European Journal of Computational Mechanics, 541–572. https://doi.org/10.13052/ejcm2642-2085.2861
Gómez-Zarzuela, C., Peña-Monferrer, C., Chiva, S., & Miró, R. (2021). Development and validation of a one-dimensional solver in a CFD platform for boiling flows in bubbly regimes. Progress in Nuclear Energy, 134, 103680. https://doi.org/10.1016/j.pnucene.2021.103680
Greenshields, C. J., Weller, H. G., Gasparini, L., & Reese, J. M. (2010). Implementation of semi‐discrete, non‐staggered central schemes in a colocated, polyhedral, finite volume framework, for high‐speed viscous flows. International Journal for Numerical Methods in Fluids, 63(1), 1–21. https://doi.org/10.1002/fld.2069
Gusarov, A. V., & Smurov, I. (2002). Gas-dynamic boundary conditions of evaporation and condensation: Numerical analysis of the Knudsen layer. Physics of Fluids, 14(12), 4242–4255. https://doi.org/10.1063/1.1516211
Gusarov, A. V., Gnedovets, A. G., & Smurov, I. (2000). Gas dynamics of laser ablation: Influence of ambient atmosphere. Journal of Applied Physics, 88(7), 4352–4364. https://doi.org/10.1063/1.1286175
Harilal, S., Miloshevsky, G., Diwakar, P., & LaHaye, N. (2013). Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Physics of Plasmas, 19, 083504. https://doi.org/10.1063/1.4745867
Harilal, S., Miloshevsky, G., Diwakar, P., LaHaye, N., & Hassanein, A. (2012). Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Physics of Plasmas, 19(8), 083504. https://doi.org/10.1063/1.4745867
Ishii, M., & Mishima, K. (1984). Two-fluid model and hydrodynamic constitutive relations. Nuclear Engineering and Design, 82(2), 107–126. https://doi.org/10.1016/0029-5493(84)90207-3
Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40–65. https://doi.org/10.1016/0021-9991(86)90099-9
Karvatskii, A. Y., Pulinets, I., Lazarev, T., & Pedchenko, A. Y. (2015). Numerical Modellling of Supersonic Flow around a Wedge with the Use of Free Open Software Code OpenFOAM], Space Science and Technology, 21(2), 47–52. https://doi.org/10.15407/knit2015.02.047
Keidar, M., Boyd, I. D., Luke, J., & Phipps, C. (2004). Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster. Journal of Applied Physics, 96(1), 49–56. https://doi.org/10.1063/1.1753658
Kelly, R. (1990). On the dual role of the Knudsen layer and unsteady, adiabatic expansion in pulse sputtering phenomena. The Journal of Chemical Physics, 92(8), 5047–5056. https://doi.org/10.1063/1.458540
Kraposhin, M. V., Ryazanov, D. A., Smirnova, E. V., Elizarova, T. G., & Istomina, M. A. (2017). Development of OpenFOAM solver for compressible viscous flows simulation using quasi-gas dynamic equations. ISPRAS, 117–123. https://doi.org/10.1109/ISPRAS.2017.00026
Kraposhin, M., Bovtrikova, A., & Strijhak, S. (2015). Adaptation of kurganov-tadmor numerical scheme for applying in combination with the piso method in numerical simulation of flows in a wide range of mach numbers. 4th International Young Scientist Conference on Computational Science, 66, 43–52. https://doi.org/10.1016/j.procs.2015.11.007
Kundrapu, M., & Keidar, M. (2009). Laser ablation of metallic targets with high fluences: Self-consistent approach. Journal of Applied Physics, 105(8), 083302. https://doi.org/10.1063/1.3098198
Kunšek, M., Kljenak, I., & Cizelj, L. (2021). Comparison of pool scrubbing simulations with POSEIDON-II experiments. https://www.djs.si/nene2021/proceedings/pdf/NENE2021_410.pdf
Kurganov, A., & Tadmor, E. (2000). New High-Resolution Semi-discrete Central Schemes for Hamilton–Jacobi Equations. Journal of Computational Physics, 160(2), 720–742. https://doi.org/10.1006/jcph.2000.6485
Kuvshinnikov, A. E. & Bondarev, A. E. (2017). Comparative study of the accuracy for OpenFOAM Solvers. 2017 Ivannikov ISPRAS Open Conference (ISPRAS), 132–136. https://doi.org/10.1109/ISPRAS.2017.00028
Leboeuf, J., Chen, K. R., Donato, J., Geohegan, D., Liu, C., Puretzky, A., & Wood, R. (1996). Modeling of plume dynamics in laser ablation processes for thin film deposition of materials. Physics of Plasmas, 3(5), 2203–2209. https://doi.org/10.1063/1.871676
Lorenzon, D., & Elaskar, S. A. (2015). Simulacion de flujos supersonicos bidimensionales y axialmente simetricos con OpenFOAM.
Mahamud, R., Hartman, D. W., & Tropina, A. A. (2020). Dynamics of dual-pulse laser energy deposition in a supersonic flow. Journal of Physics D: Applied Physics, 53(26), 265201. https://doi.org/10.1088/1361-6463/ab7fd3
Miller, J. C., & Haglund, R. F. (1998). Laser ablation and desorption (Vol. 30). Academic Press San Diego.
Miloshevsky, A., Harilal, S. S., Miloshevsky, G., & Hassanein, A. (2014). Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures. Physics of Plasmas, 21(4). https://doi.org/10.1063/1.4873701
Miloshevsky, G., & Hassanein, A. (2014). Effects of plasma flow velocity on melt-layer splashing and erosion during plasma instabilities. Nuclear Fusion, 54(3), 033008. https://doi.org/10.1088/0029-5515/54/3/033008
OpenCFD Ltd. (2021). http://www.openfoam.com.
OpenFOAM. (2021). http://www.openfoam.com.
Peng, C., Chu, M., Song, Y., Deng, J., & Wu, J. (2023). Study of the effect of magnetic field characteristics on Rayleigh-Taylor instability with density gradient layers. Computers & Fluids, 250, 105726. https://doi.org/10.1016/j.compfluid.2022.105726
Puretzky, A., Geohegan, D., Fan, X., & Pennycook, S. (2000). Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Applied Physics A, 70, 153–160. https://doi.org/10.1007/s003390050027
Rai, V., Yueh, F., & Singh, J. (2007). Laser-induced breakdown spectroscopy of liquid samples. Laser Induced Breakdown Spectroscopy, 223–254. https://doi.org/10.1016/B978-044451734-0.50013-2
Saito, K., Sakka, T., & Ogata, Y. H. (2003). Rotational spectra and temperature evaluation of C2 molecules produced by pulsed laser irradiation to a graphite–water interface. Journal of Applied Physics, 94(9), 5530–5536. https://doi.org/10.1063/1.1614431
Shaikh, N. M., Hafeez, S., Rashid, B., & Baig, M. A. (2007). Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser. The European Physical Journal D, 44(2), 371–379. https://doi.org/10.1140/epjd/e2007-00188-3
Singh, R. K., & Narayan, J. (1990). Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Physical Review B, 41(13), 8843.
Torrisi, L., Gammino, S., Andò, L., & Làska, L. (2002). Tantalum ions produced by 1064 nm pulsed laser irradiation. Journal of Applied Physics, 91(7), 4685–4692. https://doi.org/10.1063/1.1446660
Wang, Q., Jander, P., Fricke-Begemann, C., & Noll, R. (2008). Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive. Spectrochimica Acta Part B: Atomic Spectroscopy, 63(10), 1011–1015. https://doi.org/10.1016/j.sab.2008.06.008
Winefordner, J. D., Gornushkin, I. B., Correll, T., Gibb, E., Smith, B. W., & Omenetto, N. (2004). Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. Journal of Analytical Atomic Spectrometry, 19(9), 1061–1083. https://doi.org/10.1039/b400355c
Zhigilei, L. V., Lin, Z., & Ivanov, D. S. (2009). Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. The Journal of Physical Chemistry C, 113(27), 11892–11906. https://doi.org/10.1021/jp902294m