Amoruso, S., Toftmann, B., Schou, J., Velotta, R., & Wang, X. (2004). Diagnostics of laser ablated plasma plumes.
Thin Solid Films,
453, 562–572.
https://doi.org/10.1016/j.tsf.2003.11.137
Anabitarte, F., Cobo, A., & Lopez-Higuera, J. M. (2012). Laser-induced breakdown spectroscopy: Fundamentals, applications, and challenges. International
Scholarly Research Notices, 2012.
https://doi.org/10.5402/2012/285240
Bai, X., Cao, F., Motto-Ros, V., Ma, Q., Chen, Y., & Yu, J. (2015). Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study.
Spectrochimica Acta Part B: Atomic Spectroscopy,
113, 158–166.
http://dx.doi.org/10.1016/j.sab.2015.09.023
Cappelli, D. (2018).
A detailed description of reactngTwoPhaseEulerFoam focussing on the links between mass and heat transfer at the phase interface. Proceedings of CFD with OpenSource Software. Nilsson. H.
http://dx.doi.org/10.17196/OS_CFD#YEAR_2018
Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y. (2014). OpenFOAM for computational fluid dynamics.
Notices of the AMS,
61(4), 354–363.
http://dx.doi.org/10.1090/noti1095
Chrisey, D. B., & Hubler, G. K. (1994). Pulsed laser deposition of thin films.
Chryssolouris, G., Sheng, P., & Choi, W. (1990). Three- dimensional laser machining of composite materials
. Journal of Engineering Materials and Technology,112(4), 387-392.
https://doi.org/10.1115/1.2903347
Dawood, M. S., Hamdan, A., & Margot, J. (2015). Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas.
AIP Advances,
5(10).
https://doi.org/10.1063/1.4935100
Eliceiri, M., & Grigoropoulos, C. P. (2021). Comparison of transient absorption of laser ablation plasma with fundamental plasma absorption relations.
Applied Physics A,
127(7), 507.
https://doi.org/10.1007/s00339-021-04648-w
Fazio, E., Neri, F., Ponterio, R. C., Trusso, S., Tommasini, M., & Ossi, P. M. (2014). laser controlled synthesis of noble metal nanoparticle arrays for low concentration molecule recognition.
Micromachines,
5(4), Article 4.
https://doi.org/10.3390/mi5041296
Finko, M. S., & Curreli, D. (2018). Simulation of uranium plasma plume dynamics in atmospheric oxygen produced via femtosecond laser ablation.
Physics of Plasmas,
25(8), 083112.
https://doi.org/10.1063/1.5034470
Freeman, J., Harilal, S., & Hassanein, A. (2011). Enhancements of extreme ultraviolet emission using prepulsed Sn laser-produced plasmas for advanced lithography applications.
Journal of Applied Physics,
110(8).
https://doi.org/10.1063/1.3647779
Ghazanfari, V., Salehi, A. A., Keshtkar, A. R., Shadman, M. M., & Askari, M. H. (2019). Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows.
European Journal of Computational Mechanics, 541–572.
https://doi.org/10.13052/ejcm2642-2085.2861
Gómez-Zarzuela, C., Peña-Monferrer, C., Chiva, S., & Miró, R. (2021). Development and validation of a one-dimensional solver in a CFD platform for boiling flows in bubbly regimes.
Progress in Nuclear Energy,
134, 103680.
https://doi.org/10.1016/j.pnucene.2021.103680
Greenshields, C. J., Weller, H. G., Gasparini, L., & Reese, J. M. (2010). Implementation of semi‐discrete, non‐staggered central schemes in a colocated, polyhedral, finite volume framework, for high‐speed viscous flows.
International Journal for Numerical Methods in Fluids,
63(1), 1–21.
https://doi.org/10.1002/fld.2069
Gusarov, A. V., & Smurov, I. (2002). Gas-dynamic boundary conditions of evaporation and condensation: Numerical analysis of the Knudsen layer.
Physics of Fluids,
14(12), 4242–4255.
https://doi.org/10.1063/1.1516211
Gusarov, A. V., Gnedovets, A. G., & Smurov, I. (2000). Gas dynamics of laser ablation: Influence of ambient atmosphere.
Journal of Applied Physics,
88(7), 4352–4364.
https://doi.org/10.1063/1.1286175
Harilal, S., Miloshevsky, G., Diwakar, P., & LaHaye, N. (2013). Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere.
Physics of Plasmas,
19, 083504.
https://doi.org/10.1063/1.4745867
Harilal, S., Miloshevsky, G., Diwakar, P., LaHaye, N., & Hassanein, A. (2012). Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere.
Physics of Plasmas,
19(8), 083504.
https://doi.org/10.1063/1.4745867
Karvatskii, A. Y., Pulinets, I., Lazarev, T., & Pedchenko, A. Y. (2015). Numerical Modellling of Supersonic Flow around a Wedge with the Use of Free Open Software Code OpenFOAM],
Space Science and Technology, 21(2), 47–52.
https://doi.org/10.15407/knit2015.02.047
Keidar, M., Boyd, I. D., Luke, J., & Phipps, C. (2004). Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster.
Journal of Applied Physics,
96(1), 49–56.
https://doi.org/10.1063/1.1753658
Kelly, R. (1990). On the dual role of the Knudsen layer and unsteady, adiabatic expansion in pulse sputtering phenomena.
The Journal of Chemical Physics,
92(8), 5047–5056.
https://doi.org/10.1063/1.458540
Kraposhin, M. V., Ryazanov, D. A., Smirnova, E. V., Elizarova, T. G., & Istomina, M. A. (2017). Development of OpenFOAM solver for compressible viscous flows simulation using quasi-gas dynamic equations.
ISPRAS, 117–123.
https://doi.org/10.1109/ISPRAS.2017.00026
Kraposhin, M., Bovtrikova, A., & Strijhak, S. (2015). Adaptation of kurganov-tadmor numerical scheme for applying in combination with the piso method in numerical simulation of flows in a wide range of mach numbers.
4th International Young Scientist Conference on Computational Science,
66, 43–52.
https://doi.org/10.1016/j.procs.2015.11.007
Kundrapu, M., & Keidar, M. (2009). Laser ablation of metallic targets with high fluences: Self-consistent approach.
Journal of Applied Physics,
105(8), 083302.
https://doi.org/10.1063/1.3098198
Kurganov, A., & Tadmor, E. (2000). New High-Resolution Semi-discrete Central Schemes for Hamilton–Jacobi Equations.
Journal of Computational Physics,
160(2), 720–742.
https://doi.org/10.1006/jcph.2000.6485
Leboeuf, J., Chen, K. R., Donato, J., Geohegan, D., Liu, C., Puretzky, A., & Wood, R. (1996). Modeling of plume dynamics in laser ablation processes for thin film deposition of materials.
Physics of Plasmas,
3(5), 2203–2209.
https://doi.org/10.1063/1.871676
Lorenzon, D., & Elaskar, S. A. (2015). Simulacion de flujos supersonicos bidimensionales y axialmente simetricos con OpenFOAM.
Mahamud, R., Hartman, D. W., & Tropina, A. A. (2020). Dynamics of dual-pulse laser energy deposition in a supersonic flow.
Journal of Physics D: Applied Physics,
53(26), 265201.
https://doi.org/10.1088/1361-6463/ab7fd3
Miller, J. C., & Haglund, R. F. (1998). Laser ablation and desorption (Vol. 30). Academic Press San Diego.
Miloshevsky, A., Harilal, S. S., Miloshevsky, G., & Hassanein, A. (2014). Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures.
Physics of Plasmas,
21(4).
https://doi.org/10.1063/1.4873701
Peng, C., Chu, M., Song, Y., Deng, J., & Wu, J. (2023). Study of the effect of magnetic field characteristics on Rayleigh-Taylor instability with density gradient layers.
Computers & Fluids,
250, 105726.
https://doi.org/10.1016/j.compfluid.2022.105726
Puretzky, A., Geohegan, D., Fan, X., & Pennycook, S. (2000). Dynamics of single-wall carbon nanotube synthesis by laser vaporization.
Applied Physics A,
70, 153–160.
https://doi.org/10.1007/s003390050027
Saito, K., Sakka, T., & Ogata, Y. H. (2003). Rotational spectra and temperature evaluation of C2 molecules produced by pulsed laser irradiation to a graphite–water interface.
Journal of Applied Physics,
94(9), 5530–5536.
https://doi.org/10.1063/1.1614431
Shaikh, N. M., Hafeez, S., Rashid, B., & Baig, M. A. (2007). Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser.
The European Physical Journal D,
44(2), 371–379.
https://doi.org/10.1140/epjd/e2007-00188-3
Singh, R. K., & Narayan, J. (1990). Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Physical Review B, 41(13), 8843.
Torrisi, L., Gammino, S., Andò, L., & Làska, L. (2002). Tantalum ions produced by 1064 nm pulsed laser irradiation.
Journal of Applied Physics,
91(7), 4685–4692.
https://doi.org/10.1063/1.1446660
Wang, Q., Jander, P., Fricke-Begemann, C., & Noll, R. (2008). Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive.
Spectrochimica Acta Part B: Atomic Spectroscopy,
63(10), 1011–1015.
https://doi.org/10.1016/j.sab.2008.06.008
Winefordner, J. D., Gornushkin, I. B., Correll, T., Gibb, E., Smith, B. W., & Omenetto, N. (2004). Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star.
Journal of Analytical Atomic Spectrometry,
19(9), 1061–1083.
https://doi.org/10.1039/b400355c
Zhigilei, L. V., Lin, Z., & Ivanov, D. S. (2009). Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion.
The Journal of Physical Chemistry C,
113(27), 11892–11906.
https://doi.org/10.1021/jp902294m