Abdelaziz, K. R., Nawar, M. A., Ramadan, A., Attai, Y. A., & Mohamed, M. H. (2022). Performance improvement of a savonius turbine by using auxiliary blades.
Energy, 244, 122575.
https://doi.org/10.1016/j.energy.2021.122575
Amiri, M., Kahrom, M., & Teymourtash A. R. (2019). Aerodynamic analysis of a three-bladed pivoted savonius wind turbine: wind tunnel testing and numerical simulation.
Journal of Applied Fluid Mechanics, 12(3), 819–829.
https://doi.org/10.29252/JAFM.12.03.29324
Banh Duc, M., Tran the, H., Dinh Duc, N., Chu Duc, T., & Dinh Le, A. (2023). Performance enhancement of savonius wind turbine by multicurve blade shape.
Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(1), 1624–1642.
https://doi.org/10.1080/15567036.2023.2180114
Basumatary, M., Biswas, A., & Misra, R. D. (2018). CFD analysis of an innovative combined lift and drag (CLD) based modified savonius water turbine.
Energy Conversion and Management, 174, (June): 72–87.
https://doi.org/10.1016/j.enconman.2018.08.025
Driss, Z., Mlayeh, O., Driss, S., Driss, D., Maaloul, M., & Abid, M. S. (2015). Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors.
Energy, 89, 708-729.
https://doi.org/10.1016/j.energy.2015.06.023
Eshagh, M., Fatahian, H., & Fatahian, E. (2020). Performance improvement of a savonius vertical axis wind turbine using a porous de fl ector.
Energy Conversion and Management,
220,(June): 113062.
https://doi.org/10.1016/j.enconman.2020.113062
Goodarzi, M., & Salimi, S. (2025). Numerical assessment of the effect of different end-plates on the performance of a finite-height Savonius turbine.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 47(1), 11168-11187.
https://doi.org/10.1080/15567036.2021.1976324
Hazar, O., Dirgenali, M., Kaçar, K., & Elçi, S. (2025). Enhancement of savonius wind turbine performance through blade optimization.
Journal of Applied Fluid Mechanics, 18(5), 1174–1188.
https://doi.org/10.47176/jafm.18.5.3177
Jeon, K. S., Jeong, J. I., Pan, J. K., & Ryu, K. W. (2015). Effects of end plates with various shapes and sizes on helical savonius wind turbines.
Renewable Energy, 79(1), 167–76.
https://doi.org/10.1016/j.renene.2014.11.035
John, B., Thomas, R. N., & Varghese, J. (2020). Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition.
Renewable Energy, 149, 361-373.
https://doi.org/10.1016/j.renene.2019.12.014
Kailash, G., Eldho, T. I., & Prabhu, S. V. (2012). Performance study of modified Savonius water turbine with two deflector plates.
International Journal of Rotating Machinery,
2012(1), 679247.
https://doi.org/10.1155/2012/679247
Khan, M. J., Bhuyan, G., Iqbal, M. T., & Quaicoe, J. E. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review.
Applied Energy, 86(10), 1823–1835.
https://doi.org/10.1016/j.apenergy.2009.02.017
Patel, C., Rathod, V., & Patel, V. (2023a). Experimental investigations of hydrokinetic turbine providing fillet at the leading edge corner of the runner blades.
Journal of Applied Fluid Mechanics, 16(4), 865–76.
https://doi.org/10.47176/jafm.16.04.1533
Patel, J. S., Patel, V. K., & Rathod, V. P. (2023b). Influence of negative overlap ratio on the performance of semicircular savonius rotor with straight edge extension on overlap region.
Green Energy and Technology, 317–330.
https://doi.org/10.1007/978-981-99-2279-6_27
Patel, J. S., Rathod, V., & Patel, V. (2023c). Influence of extension ratio on the performance of the modified Savonius hydrokinetic turbine.
Journal of Energy Engineering,
149(6), 04023043.
https://doi.org/10.1061/JLEED9.EYENG-4992
Patel, R., & Patel, V. (2022). Performance analysis of Savonius hydrokinetic turbine using ‘C’shaped Deflector.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,
44(3), 6618-6631.
https://doi.org/10.1080/15567036.2022.2101718
Patel, V. K., & Patel, R. S. (2022). Optimization of an angle between the deflector plates and its orientation to enhance the energy efficiency of Savonius hydrokinetic turbine for dual rotor configuration.
International Journal of Green Energy,
19(5), 476-489.
https://doi.org/10.1080/15435075.2021.1947821
Patel, V., Bhat, G., Eldho, T. I., & Prabhu, S. V. (2017). Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine.
International Journal of Energy Research,
41(6), 829-844.
https://doi.org/10.1002/er.3670
Patel, V., Eldho, T. I., & Prabhu, S. V. (2018). Theoretical study on the prediction of the hydrodynamic performance of a Savonius turbine based on stagnation pressure and impulse momentum principle.
Energy Conversion and Management,
168, 545-563.
https://doi.org/10.1016/j.enconman.2018.04.065
Ramarajan, J., & Jayavel, S. (2022). Performance Improvement in Savonius Wind Turbine by Modification of Blade Shape.
Journal of Applied Fluid Mechanics, 15(1), 99–107.
https://doi.org/10.47176/jafm.15.01.32516
Salleh, M. B., Kamaruddin, N. M., & Mohamed-Kassim, Z. (2022). Experimental investigation on the effects of deflector angles on the power performance of a Savonius turbine for hydrokinetic applications in small rivers.
Energy,
247, 123432.
https://doi.org/10.1016/j.energy.2022.123432
Sharma, S., & Sharma, R. K. (2017). CFD investigation to quantify the effect of layered multiple miniature blades on the performance of Savonius rotor.
Energy Conversion and Management, 144, 275–285.
https://doi.org/10.1016/j.enconman.2017.04.059
Shashikumar, C. M., Vijaykumar, H., & Vasudeva, M. (2021). Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel.
Sustainable Energy Technologies and Assessments,
43, 100871.
https://doi.org/10.1016/j.seta.2020.100871
Talukdar, P. K., Sardar, A., Kulkarni, V., & Saha, U. K. (2018). Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations.
Energy Conversion and Management,
158, 36-49.
https://doi.org/10.1016/j.enconman.2017.12.011
Tartuferi, M., D'Alessandro, V., Montelpare, S., & Ricci, R. (2015). Enhancement of savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems.
Energy, 79, 371-384.
https://doi.org/10.1016/j.energy.2014.11.023
Tata, M., Bekhti, A., Maizi, M., Cherifi, N. O., Tamoum, A., Hamane, D., Boudis, A., Debbache, M., & Guerri, O. (2024). Aerodynamic performance investigations of savonius twin-rotor wind turbines.
Journal of Applied Fluid Mechanics, 17(2), 442–460.
https://doi.org/10.47176/jafm.17.02.2044
Thiyagaraj, J., Rahamathullah, I., Anbuchezhiyan, G., Barathiraja, R., & Ponshanmugakumar, A. (2020). Influence of blade numbers, overlap ratio and modified blades on performance characteristics of the savonius hydro-kinetic turbine.
Materials Today: Proceedings, 46, 4047–53.
https://doi.org/10.1016/j.matpr.2021.02.568
Yahya, W., Ziming, K., Juan, W., Qurashi, M. S., Al-Nehari, M., & Salim, E. (2021). Influence of tilt angle and the number of guide vane blades towards the Savonius rotor performance.
Energy Reports,
7, 3317-3327.
https://doi.org/10.1016/j.egyr.2021.05.053
Yuwono, T., Sakti, G., Aulia, F. N., & Wijaya, A. C. (2020). Improving the performance of Savonius wind turbine by installation of a circular cylinder upstream of returning turbine blade.
Alexandria Engineering Journal,
59(6), 4923-4932.
https://doi.org/10.1016/j.aej.2020.09.009
Zhang, Y. N., Cao, H. J., & Zhang, M. M. (2021a). Investigation of leading-edge protu berances for the performance improvement of thick wind turbine airfoil1.
Journal of Wind Engineering and Industrial Aerodynamics,
217, 104736.
https://doi.org/10.1016/j.jweia.2021.104736.
Zhang, Y., Zhang, X., Chang, M., & Xu, J. (2021b). Aerodynamic performance of a low-Reynolds UAV with leading-edge protuberances inspired by humpback whale flippers.
Chinese Journal of Aeronautics,
34(5), 415-424.
https://doi.org/10.1016/j.cja.2020.11.004