Rotating Stall Characteristics in the Hump Region of a Pump Turbine: Application of Modal Decomposition

Document Type : Regular Article

Authors

1 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2 School of Petroleum and Natural Gas Engineering, Liaoning Petrochemical University, Fushun Liaoning 113001, China

3 Harbin Electric Machinery Company Limited, Harbin 150040, China

4 Harbin Institute of Large Electric Machinery, Harbin 150040, China

10.47176/jafm.18.12.3652

Abstract

A reversible pump turbine is a large-scale commercial energy storage device that serves as the core component of a pumped storage power station. Under pump operating conditions, the reversible pump turbine often exhibits hump characteristics on the head–discharge performance curve, leading to operational instability and limiting both regulation performance and safety. However, the mechanism underlying flow instability in the hump region is not adequately understood. Existing analysis methods are limited in scope, and they struggle to identify key flow structures accurately in application. In this study, large eddy simulation (LES) is used to investigate unsteady flow characteristics under typical hump conditions. Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) methods are applied to a transient flow field to extract dominant modal structures and analyze their dynamic behaviors. The results show that rotating stalls in the guide vane and runner regions are the primary factors creating hump characteristics. Both the POD and DMD methods effectively capture major vortex structures and their changes, demonstrating their suitability for analyzing complex flow dynamics. These findings provide theoretical insight into the flow instability mechanism in the hump region and offer guidance for improving the operational performance of pump turbines.

Keywords

Main Subjects


Arbabi, H., & Mezic, I. (2017). Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the koopman operator. SIAM Journal on Applied Dynamical Systems, 16(4), 2096–2126. https://doi.org/10.1137/17M1125236
Chang, X., & Gao, D. (2023). A comparative study of data-driven modal decomposition analysis of unforced and forced cylinder wakes. Journal of Visualization, 26(4), 755–777. https://doi.org/10.1007/s12650-023-00912-8
Cheng, Y., & Chen, Q. (2021). Large eddy simulation and dynamic mode decomposition of turbulent mixing layers. Applied Sciences, 11(24), 12127. https://doi.org/10.3390/app112412127
Dehghan, A. A., & Shojaeefard, M. H. (2022). Experimental and numerical optimization of a centrifugal pump volute and its effect on head and hydraulic efficiency at the best efficiency point. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(9), 4577–4598. https://doi.org/10.1177/09544062211056019
Dehghan, A. A., Shojaeefard, M. H., & Roshanaei, M. (2024). Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation. Energy, 293, 130681. https://doi.org/10.1016/j.energy.2024.130681
François, B., Hingray, B., Raynaud, D., Borga, M., & Creutin, J. D. (2016). Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renewable Energy, 87, 686–696. https://doi.org/10.1016/j.renene.2015.10.064
Han, Y., & Tan, L. (2020). Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode. Renewable Energy, 155, 725–734. https://doi.org/10.1016/j.renene.2020.03.142
Hao, Z., Shi, G., Peng, X., Chai, H., Lv, W., & Huang, Z. (2024). Study on the influence of vortex spatial-temporal evolution on the causes of hump region of Pump-Turbine and the characteristics of vortex dynamics. Journal of Energy Storage, 92, 112297. https://doi.org/10.1016/j.est.2024.112297
Heng, Y., Yuan, S., Hong, F., Yuan, J., Si, Q., & Hu, B. (2014). A hybrid method for flow-induced noise in centrifugal pumps based on LES and FEM. Proceedings of the ASME Fluids Engineering Division Summer Meeting, 2013, 1b: Symposia, V01BT10A034.
Jin, F., Luo, Y., Bi, H., Wang, H., Wang, Z., Lin, K., Lei, X., & Yang, X. (2023). Transient simulation of reversible pump turbine during pump mode’s starting up. Journal of Energy Storage, 68, 107678. https://doi.org/10.1016/j.est.2023.107678
Karapici, V., Trojer, A., Lazarevikj, M., Pluskal, T., Chernobrova, A., Neziric, E., Zuecco, G., Alerci, A. L., Seydoux, M., Doujak, E., & Rudolf, P. (2024). Opportunities of hidden hydropower technologies towards the energy transition. Energy Reports, 12, 5633–5647. https://doi.org/10.1016/j.egyr.2024.11.039
Lai, X., Chen, X., Liang, Q., Ye, D., Gou, Q., Wang, R., & Yan, Y. (2023). Experimental and numerical investigation of vortex flows and pressure fluctuations in a high-head pump-turbine. Renewable Energy, 211, 236–247. https://doi.org/10.1016/j.renene.2023.04.092
Li, D., Wang, H., Qin, Y., Wei, X., & Qin, D. (2018). Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model. Renewable Energy, 115, 433–447. https://doi.org/10.1016/j.renene.2017.08.081
Liang, A., Li, H., Zhang, W., Yao, Z., Zhu, B., & Wang, F. (2024). Study on pressure fluctuation and rotating stall characteristics in the vaneless space of a pump-turbine in pump mode. Journal of Energy Storage, 94, 112385. https://doi.org/10.1016/j.est.2024.112385
Liang, W., Chen, T., Wang, G., & Huang, B. (2020). Investigation of unsteady liquid nitrogen cavitating flows with special emphasis on the vortex structures using mode decomposition methods. International Journal of Heat and Mass Transfer, 157, 119880. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119880
Liao, Z. Y., Yang, J., Liu, X. H., Hu, W. L., & Deng, X. R. (2020). Analysis of unsteady flow structures in a centrifugal impeller using proper orthogonal decomposition. Journal of Applied Fluid Mechanics, 14(1), 89–101. https://doi.org/10.47176/jafm.14.01.31299
Liu, D., Xun, H., Wang, Z., Li, G., Zheng, J., Liu, X., & Hao, Z. (2024). Analysis of vortex characteristics in hump region of reversible pump-turbine based on omega vortex identification method. AIP Advances, 14(3), 035130. https://doi.org/10.1063/5.0199021
Liu, M., Tan, L., & Cao, S. (2019a). Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil. Renewable Energy, 139, 214–227. https://doi.org/10.1016/j.renene.2019.02.055
Liu, M., Tan, L., & Cao, S. (2019b). Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump. Renewable Energy, 139, 1159–1175. https://doi.org/10.1016/j.renene.2019.03.015
Long, Y., Guo, X., & Xiao, T. (2024). Research, application and future prospect of mode decomposition in fluid mechanics. Symmetry, 16(2), 155. https://doi.org/10.3390/sym16020155
Lu, J., Qian, Z., & Lee, Y. H. (2021). Numerical investigation of unsteady characteristics of a pump turbine under runaway condition. Renewable Energy, 169, 905–924. https://doi.org/10.1016/j.renene.2021.01.063
Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation, Journal of Computational Chemistry, 23 (13), 1236–1243. http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=D3D18DF04BF1E9304E98A88B3DFDD699?cid=3063452
Magionesi, F., Dubbioso, G., Muscari, R., & Mascio, A. D. (2018). Modal analysis of the wake past a marine propeller. Journal of Fluid Mechanics, 855, 469–502. https://doi.org/10.1017/jfm.2018.631
Mahfoud, R. J., Alkayem, N. F., Zhang, Y., Zheng, Y., Sun, Y., & Alhelou, H. H. (2023). Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives. Renewable and Sustainable Energy Reviews, 178, 113267. https://doi.org/10.1016/j.rser.2023.113267
Mariappan, S., Gardner, A. D., Richter, K., & Raffel, M. (2014). Analysis of dynamic stall using dynamic mode decomposition technique. AIAA Journal, 52(11), 2427–2439. https://doi.org/10.2514/1.J052858
Mohsin, M., Orynbassarov, D., Anser, M. K., & Oskenbayev, Y. (2023). Does hydropower energy help to reduce CO2 emissions in European Union countries? Evidence from quantile estimation. Environmental Development, 45, 100794. https://doi.org/10.1016/j.envdev.2022.100794
Muld, T. W., Efraimsson, G., & Henningson, D. S. (2012). Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition. Computers & Fluids, 57, 87–97. https://doi.org/10.1016/j.compfluid.2011.12.012
Nasir, J., Javed, A., Ali, M., Ullah, K., & Kazmi, S. A. A. (2022). Capacity optimization of pumped storage hydropower and its impact on an integrated conventional hydropower plant operation. Applied Energy, 323, 119561. https://doi.org/10.1016/j.apenergy.2022.119561
Proctor, J. L., Brunton, S. L., & Kutz, J. N. (2016). Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems, 15(1), 142–161. https://doi.org/10.1137/15M1013857
Qin, Y., Li, D., Wang, H., Liu, Z., Wei, X., & Wang, X. (2023). Mechanism of runner high-pressure side on stall characteristics at typical unsteady operating points in both modes of a pump turbine. Physics of Fluids, 35(7), 074102. https://doi.org/10.1063/5.0155655
Renhui, Z., Chen, X., & Luo, J. (2020). Knowledge mining of low specific speed centrifugal pump impeller based on proper orthogonal decomposition method. Journal of Thermal Science, 30. https://doi.org/10.1007/s11630-020-1356-5
Rowley, C. W., & Dawson, S. T. M. (2017). Model reduction for flow analysis and control. Annual Review of Fluid Mechanics, 49, 387-417. https://doi.org/10.1146/annurev-fluid-010816-060042
Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656, 5–28. https://doi.org/10.1017/S0022112010001217
Schmid, P. J. (2022). Dynamic mode decomposition and its variants. Annual Review of Fluid Mechanics, 54, 225–254. https://doi.org/10.1146/annurev-fluid-030121-015835
Sieber, M., Paschereit, C. O., & Oberleithner, K. (2016). Spectral proper orthogonal decomposition. Journal of Fluid Mechanics, 792, 798–828. https://doi.org/10.1017/jfm.2016.103
Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. I. Coherent structures. Quarterly of Applied Mathematics, 45, 561–571. https://doi.org/10.1090/qam/910462
Subramanya, K., & Chelliah, T. R. (2023). Capability of synchronous and asynchronous hydropower generating systems: A comprehensive study. Renewable and Sustainable Energy Reviews, 188, 113863. https://doi.org/10.1016/j.rser.2023.113863
Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V., & Ukeiley, L. S. (2017). Modal analysis of fluid flows: An overview. AIAA Journal, 55(12), 4013–4041. https://doi.org/10.2514/1.J056060
Taira, K., Hemati, M. S., Brunton, S. L., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S. T. M., & Yeh, C.-A. (2020). Modal analysis of fluid flows: applications and outlook. AIAA Journal, 58(3), 998–1022. https://doi.org/10.2514/1.J058462
Towne, A., Schmidt, O. T., & Colonius, T. (2018). Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. Journal of Fluid Mechanics, 847, 821–867. https://doi.org/10.1017/jfm.2018.283
Wang, Z., Fang, G., Wen, X., Tan, Q., Zhang, P., & Liu, Z. (2023a). Coordinated operation of conventional hydropower plants as hybrid pumped storage hydropower with wind and photovoltaic plants. Energy Conversion and Management, 277, 116654. https://doi.org/10.1016/j.enconman.2022.116654
Wang, J., Wang, C., Liu, C., & Wu, J. (2023b). Numerical study on stall characteristics of a triangular airfoil in low Reynolds number compressible flow. 17th Asian Congress of Fluid Mechanics (ACFM 2023), 2023, 182–189. https://doi.org/10.1049/icp.2023.1947
Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A data-driven approximation of the koopman operator: extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6), 1307–1346. https://doi.org/10.1007/s00332-015-9258-5
Wu, H. (2023). Evaluating the role of renewable energy investment resources and green finance on the economic performance: Evidence from OECD economies. Resources Policy, 80, 103149. https://doi.org/10.1016/j.resourpol.2022.103149
Xu, L., Kan, K., Zheng, Y., Liu, D., Binama, M., Xu, Z., Yan, X., Guo, M., & Chen, H. (2024a). Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution. Energy, 292, 130579. https://doi.org/10.1016/j.energy.2024.130579
Yang, J., Feng, X., Liao, Z., Pan, K., & Liu, X. (2023). Analysis on the mechanism of rotating stall inner a pump turbine in pump mode based on the proper orthogonal decomposition. Journal of Fluids Engineering, 145 (9), 091202. https://doi.org/10.1115/1.4062345
Yang, Z., Wang, F., & Zhou, P. (2012). Evaluation of subgrid-scale models in large-eddy simulations of turbulent flow in a centrifugal pump impeller. Chinese Journal of Mechanical Engineering, 25(5), 911–918. https://doi.org/10.3901/CJME.2012.05.911
Ye, W., Qian, Z., Zeng, Y., Ma, W., Geng, X., Luo, X., & Wang, H. (2024). Numerical investigation on the unstable flow and its interaction with the hump characteristic in a pump turbine at pump mode. Journal of Energy Storage, 101, 113853. https://doi.org/10.1016/j.est.2024.113853
Yin, X., Huang, X., Zhang, S., Bi, H., & Wang, Z. (2023). Numerical investigation of flow and structural characteristics of a large high-head prototype pump-turbine during turbine start-up. Energies, 16(9), 3743. https://doi.org/10.3390/en16093743
Zhang, F., Chen, Z., Han, S., & Zhu, B. (2024). Study on the unsteady flow characteristics of a pump turbine in pump mode. Processes, 12(1), 41. https://doi.org/10.3390/pr12010041
Zheng, Y., Tang, K., Xu, L., Ren, S., Xu, J., Wang, Y., An, D., & Ye, C. (2024). Stability analysis of pump-turbine in hump zone based on omega vortex identification method. Water, 16(23), 3443. https://doi.org/10.3390/w16233443