Arbabi, H., & Mezic, I. (2017). Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the koopman operator.
SIAM Journal on Applied Dynamical Systems,
16(4), 2096–2126.
https://doi.org/10.1137/17M1125236
Chang, X., & Gao, D. (2023). A comparative study of data-driven modal decomposition analysis of unforced and forced cylinder wakes.
Journal of Visualization,
26(4), 755–777.
https://doi.org/10.1007/s12650-023-00912-8
Cheng, Y., & Chen, Q. (2021). Large eddy simulation and dynamic mode decomposition of turbulent mixing layers.
Applied Sciences,
11(24), 12127.
https://doi.org/10.3390/app112412127
Dehghan, A. A., & Shojaeefard, M. H. (2022). Experimental and numerical optimization of a centrifugal pump volute and its effect on head and hydraulic efficiency at the best efficiency point.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
236(9), 4577–4598.
https://doi.org/10.1177/09544062211056019
Dehghan, A. A., Shojaeefard, M. H., & Roshanaei, M. (2024). Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation.
Energy,
293, 130681.
https://doi.org/10.1016/j.energy.2024.130681
François, B., Hingray, B., Raynaud, D., Borga, M., & Creutin, J. D. (2016). Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix.
Renewable Energy,
87, 686–696.
https://doi.org/10.1016/j.renene.2015.10.064
Hao, Z., Shi, G., Peng, X., Chai, H., Lv, W., & Huang, Z. (2024). Study on the influence of vortex spatial-temporal evolution on the causes of hump region of Pump-Turbine and the characteristics of vortex dynamics.
Journal of Energy Storage,
92, 112297.
https://doi.org/10.1016/j.est.2024.112297
Heng, Y., Yuan, S., Hong, F., Yuan, J., Si, Q., & Hu, B. (2014). A hybrid method for flow-induced noise in centrifugal pumps based on LES and FEM. Proceedings of the ASME Fluids Engineering Division Summer Meeting, 2013, 1b: Symposia, V01BT10A034.
Jin, F., Luo, Y., Bi, H., Wang, H., Wang, Z., Lin, K., Lei, X., & Yang, X. (2023). Transient simulation of reversible pump turbine during pump mode’s starting up.
Journal of Energy Storage,
68, 107678.
https://doi.org/10.1016/j.est.2023.107678
Karapici, V., Trojer, A., Lazarevikj, M., Pluskal, T., Chernobrova, A., Neziric, E., Zuecco, G., Alerci, A. L., Seydoux, M., Doujak, E., & Rudolf, P. (2024). Opportunities of hidden hydropower technologies towards the energy transition.
Energy Reports,
12, 5633–5647.
https://doi.org/10.1016/j.egyr.2024.11.039
Lai, X., Chen, X., Liang, Q., Ye, D., Gou, Q., Wang, R., & Yan, Y. (2023). Experimental and numerical investigation of vortex flows and pressure fluctuations in a high-head pump-turbine.
Renewable Energy,
211, 236–247.
https://doi.org/10.1016/j.renene.2023.04.092
Li, D., Wang, H., Qin, Y., Wei, X., & Qin, D. (2018). Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model.
Renewable Energy,
115, 433–447.
https://doi.org/10.1016/j.renene.2017.08.081
Liang, A., Li, H., Zhang, W., Yao, Z., Zhu, B., & Wang, F. (2024). Study on pressure fluctuation and rotating stall characteristics in the vaneless space of a pump-turbine in pump mode.
Journal of Energy Storage,
94, 112385.
https://doi.org/10.1016/j.est.2024.112385
Liang, W., Chen, T., Wang, G., & Huang, B. (2020). Investigation of unsteady liquid nitrogen cavitating flows with special emphasis on the vortex structures using mode decomposition methods.
International Journal of Heat and Mass Transfer,
157, 119880.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119880
Liao, Z. Y., Yang, J., Liu, X. H., Hu, W. L., & Deng, X. R. (2020). Analysis of unsteady flow structures in a centrifugal impeller using proper orthogonal decomposition.
Journal of Applied Fluid Mechanics,
14(1), 89–101.
https://doi.org/10.47176/jafm.14.01.31299
Liu, D., Xun, H., Wang, Z., Li, G., Zheng, J., Liu, X., & Hao, Z. (2024). Analysis of vortex characteristics in hump region of reversible pump-turbine based on omega vortex identification method.
AIP Advances,
14(3), 035130.
https://doi.org/10.1063/5.0199021
Long, Y., Guo, X., & Xiao, T. (2024). Research, application and future prospect of mode decomposition in fluid mechanics.
Symmetry,
16(2), 155.
https://doi.org/10.3390/sym16020155
Magionesi, F., Dubbioso, G., Muscari, R., & Mascio, A. D. (2018). Modal analysis of the wake past a marine propeller.
Journal of Fluid Mechanics,
855, 469–502.
https://doi.org/10.1017/jfm.2018.631
Mahfoud, R. J., Alkayem, N. F., Zhang, Y., Zheng, Y., Sun, Y., & Alhelou, H. H. (2023). Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives.
Renewable and Sustainable Energy Reviews,
178, 113267.
https://doi.org/10.1016/j.rser.2023.113267
Mariappan, S., Gardner, A. D., Richter, K., & Raffel, M. (2014). Analysis of dynamic stall using dynamic mode decomposition technique.
AIAA Journal,
52(11), 2427–2439.
https://doi.org/10.2514/1.J052858
Mohsin, M., Orynbassarov, D., Anser, M. K., & Oskenbayev, Y. (2023). Does hydropower energy help to reduce CO2 emissions in European Union countries? Evidence from quantile estimation.
Environmental Development,
45, 100794.
https://doi.org/10.1016/j.envdev.2022.100794
Muld, T. W., Efraimsson, G., & Henningson, D. S. (2012). Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition.
Computers & Fluids,
57, 87–97.
https://doi.org/10.1016/j.compfluid.2011.12.012
Nasir, J., Javed, A., Ali, M., Ullah, K., & Kazmi, S. A. A. (2022). Capacity optimization of pumped storage hydropower and its impact on an integrated conventional hydropower plant operation.
Applied Energy,
323, 119561.
https://doi.org/10.1016/j.apenergy.2022.119561
Proctor, J. L., Brunton, S. L., & Kutz, J. N. (2016). Dynamic mode decomposition with control.
SIAM Journal on Applied Dynamical Systems,
15(1), 142–161.
https://doi.org/10.1137/15M1013857
Qin, Y., Li, D., Wang, H., Liu, Z., Wei, X., & Wang, X. (2023). Mechanism of runner high-pressure side on stall characteristics at typical unsteady operating points in both modes of a pump turbine.
Physics of Fluids,
35(7), 074102.
https://doi.org/10.1063/5.0155655
Renhui, Z., Chen, X., & Luo, J. (2020). Knowledge mining of low specific speed centrifugal pump impeller based on proper orthogonal decomposition method.
Journal of Thermal Science,
30.
https://doi.org/10.1007/s11630-020-1356-5
Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. I. Coherent structures.
Quarterly of Applied Mathematics,
45, 561–571.
https://doi.org/10.1090/qam/910462
Subramanya, K., & Chelliah, T. R. (2023). Capability of synchronous and asynchronous hydropower generating systems: A comprehensive study.
Renewable and Sustainable Energy Reviews,
188, 113863.
https://doi.org/10.1016/j.rser.2023.113863
Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V., & Ukeiley, L. S. (2017). Modal analysis of fluid flows: An overview.
AIAA Journal,
55(12), 4013–4041.
https://doi.org/10.2514/1.J056060
Taira, K., Hemati, M. S., Brunton, S. L., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S. T. M., & Yeh, C.-A. (2020). Modal analysis of fluid flows: applications and outlook.
AIAA Journal,
58(3), 998–1022.
https://doi.org/10.2514/1.J058462
Towne, A., Schmidt, O. T., & Colonius, T. (2018). Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis.
Journal of Fluid Mechanics, 847, 821–867.
https://doi.org/10.1017/jfm.2018.283
Wang, Z., Fang, G., Wen, X., Tan, Q., Zhang, P., & Liu, Z. (2023a). Coordinated operation of conventional hydropower plants as hybrid pumped storage hydropower with wind and photovoltaic plants.
Energy Conversion and Management,
277, 116654.
https://doi.org/10.1016/j.enconman.2022.116654
Wang, J., Wang, C., Liu, C., & Wu, J. (2023b).
Numerical study on stall characteristics of a triangular airfoil in low Reynolds number compressible flow. 17th Asian Congress of Fluid Mechanics (ACFM 2023), 2023, 182–189.
https://doi.org/10.1049/icp.2023.1947
Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A data-driven approximation of the koopman operator: extending dynamic mode decomposition.
Journal of Nonlinear Science,
25(6), 1307–1346.
https://doi.org/10.1007/s00332-015-9258-5
Xu, L., Kan, K., Zheng, Y., Liu, D., Binama, M., Xu, Z., Yan, X., Guo, M., & Chen, H. (2024a). Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution.
Energy,
292, 130579.
https://doi.org/10.1016/j.energy.2024.130579
Yang, J., Feng, X., Liao, Z., Pan, K., & Liu, X. (2023). Analysis on the mechanism of rotating stall inner a pump turbine in pump mode based on the proper orthogonal decomposition.
Journal of Fluids Engineering,
145 (9), 091202.
https://doi.org/10.1115/1.4062345
Yang, Z., Wang, F., & Zhou, P. (2012). Evaluation of subgrid-scale models in large-eddy simulations of turbulent flow in a centrifugal pump impeller.
Chinese Journal of Mechanical Engineering,
25(5), 911–918.
https://doi.org/10.3901/CJME.2012.05.911
Ye, W., Qian, Z., Zeng, Y., Ma, W., Geng, X., Luo, X., & Wang, H. (2024). Numerical investigation on the unstable flow and its interaction with the hump characteristic in a pump turbine at pump mode.
Journal of Energy Storage,
101, 113853.
https://doi.org/10.1016/j.est.2024.113853
Yin, X., Huang, X., Zhang, S., Bi, H., & Wang, Z. (2023). Numerical investigation of flow and structural characteristics of a large high-head prototype pump-turbine during turbine start-up.
Energies,
16(9), 3743.
https://doi.org/10.3390/en16093743
Zhang, F., Chen, Z., Han, S., & Zhu, B. (2024). Study on the unsteady flow characteristics of a pump turbine in pump mode.
Processes,
12(1), 41.
https://doi.org/10.3390/pr12010041
Zheng, Y., Tang, K., Xu, L., Ren, S., Xu, J., Wang, Y., An, D., & Ye, C. (2024). Stability analysis of pump-turbine in hump zone based on omega vortex identification method.
Water,
16(23), 3443.
https://doi.org/10.3390/w16233443