Optimisation of the Experimental Conditions for the Smoke Wire Technique in a Boundary Layer Wind Tunnel

Document Type : Regular Article

Authors

1 Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang As-Sultan Abdullah (UMPSA), Malaysia

2 Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia

10.47176/jafm.18.12.3550

Abstract

Optimal experimental conditions, namely the nozzle size, wire diameter, power value, and wind speed, for a smoke wire technique (SWT) with a control dripping valve (CDV) and tensioner system were proposed to ensure dense, straight, and continuous streaklines for flow visualisation experiments. The investigation was conducted using a single heated nichrome wire in a small-scale boundary layer wind tunnel (BLWT) constructed at Universiti Malaysia Pahang As-Sultan Abdullah, Malaysia. Through the CDV, the water-based solution is automatically replenished to the heated single nichrome while maintaining a consistent wire strain with the aid of a specifically designed tensioner system. A simple shape, a surface-mounted finite circular cylinder, was utilised as the rigid body to observe the flow pattern during the experiment, which was verified with findings from previous literature. A high-speed digital camera, the MEMRECAM HX-7s system, was used to record instantaneous images of the streaklines. Clear images of dense, straight, and continuous smoke lines were captured at a free-stream velocity of 1.5 m/s using a 0.5 mm nichrome wire diameter, a 0.6 mm nozzle diameter, and 35 W power conditions.

Keywords

Main Subjects


Abdullah, K. K.  Rahmat, N. A. & Khairunizam, K. A. (2022). Flow pattern around traditional Malay house using enhanced smoke wire technique in a boundary layer wind tunnel, Engineering Technology International Conference (ETIC 2022), Online Conference, Kuantan, Malaysia, 2022, pp. 49-56, https://doi.org/10.1049/icp.2022.2569.
Azizi, M. N. (2012). Design and Construction of smoke wire apparatus for wind tunnel flow visualization. http://utpedia.utp.edu.my/id/eprint/5562
Barlas, E., Buckingham, S., & van Beeck, J. (2016). Roughness effects on wind-turbine wake dynamics in a boundary-layer wind tunnel. Boundary-Layer Meteorology, 158(1), 27–42. https://doi.org/10.1007/s10546-015-0083-z
Barlow, J. B., Rae, W. H., & Pope, A. (1999). Low-speed wind tunnel testing. Wiley.
Batill, S. M., & Mueller, T. J. (1981). Visualization of transition in the flow over an airfoil using the smoke-wire technique. AIAA Journal, 19(3), 340–345. https://doi.org/10.2514/3.50953
Bradshaw, P. (1966). The effect of wind-tunnel screens on nominally two-dimensional boundary layers. Journal of Fluid Mechanics, 22(4), 679–687. https://doi.org/10.1017/S0022112065001064
Cermak, J. E., Cochran, L. S., & Leflier, R. D. (1995). Wind-tunnel modelling of the atmospheric surface layer. Journal of Wind Engineering and Industrial Aerodynamics, 54–55(C), 505–513. https://doi.org/10.1016/0167-6105(94)00065-L
Cho, H. W., Park, Y. G., Ha, M. Y., & Seo, Y. M. (2022). Three-dimensional mixed convection in a rectangular enclosure containing a circular cylinder. Heat Transfer Engineering, 43(11), 879–895. https://doi.org/10.1080/01457632.2021.1919970
Cook, N. J. (1975). A boundary layer wind tunnel for building aerodynamics. journal of Industrial Aerodynamics, 1.
Cornaro, C., Fleischer, A. S., & Goldstein, R. J. (1999). Flow visualization of a round jet impinging on cylindrical surfaces. www.elsevier.nl/locate/etfs
Dol, S. S., Mohd, A. M., Khairun, M., Iskandar, B. S. (2006). An Improved Smoke-Wire Flow Visualization Technique. https://api.semanticscholar.org/CorpusID:13905908
Dol, S. S., Yong, T. H., Chan, H. Bin, Wee, S. K., & Sulaiman, S. A. (2021). Turbulence characteristics of the flexible circular cylinder agitator. Fluids, 6(7). https://doi.org/10.3390/fluids6070238
Ferradosa, T., Pinto, F. T., Oliveira, B., Simons, R., & Porter, K. (2014). Scour around marine foundations in layered sediments: a mathematical modelling approach. https://www.researchgate.net/publication/261510986
Fitriady, M. A., Rahmat, N. A., & Mohammad, A. F. (2022). Numerical simulation on the elucidation of wake flow structure behind a single quarter elliptic-wedge spire. Engineering Technology International Conference (ETIC 2022), 2022, 289–297. https://doi.org/10.1049/icp.2022.2627
Fitriady, M. A., Rahmat, N. A., & Mohammad, A. F. (2023a). Urban heat island phenomenon in tropical countries: analysis of the wake flow behind slender high-rise building. Lecture Notes in Energy (Vol. 92, pp. 273–288). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-19-6688-0_17
Fitriady, M. A., Rahmat, N. A., & Mohammad, A. F. (2023b). Vertical and spanwise wake flow structures of a single spire over smooth wall surface in a wind tunnel. Journal of Applied Fluid Mechanics, 16(12), 2459–2470. https://doi.org/10.47176/jafm.16.12.1890
Fitriady, M. A., Rahmat, N. A., Mohammad, A. F., & Zaki, S. A. (2023c). Numerical simulation of the boundary layer development behind a single quarter elliptic-wedge spire. Journal of Mechanical Engineering and Sciences, 9421–9432. https://doi.org/10.15282/jmes.17.2.2023.1.0745
Fitriady, M. A., Rahmat, N. A., Mohammad, A. F., & Zaki, S. A. (2023d). Effect of mesh refinement on vertical and lateral velocity profiles of the wake flow behind a spire using computational fluid dynamic (CFD). Journal of Engineering and Technology 14(2), 2180–3811. https://jet.utem.edu.my/jet/index
Fu, J. Y., Li, Q. S., Wu, J. R., Xiao, Y. Q., & Song, L. L. (2008). Field measurements of boundary layer wind characteristics and wind-induced responses of super-tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(8–9), 1332–1358. https://doi.org/10.1016/j.jweia.2008.03.004
Gao, N., & Liu, X. H. (2018). An improved smoke-wire flow visualization technique using capacitor as power source. Theoretical and Applied Mechanics Letters, 8(6), 378–383. https://doi.org/10.1016/j.taml.2018.06.010
Hadi Wijaya, M., Ahmad Zaki, S., Faiz Mohamad, A., Atikha Rahmat, N., Othman, A., Malaysia, T., Sultan Yahya Petra, J., & Lumpur, K. (2024). Investigation of wind flow characteristics using passive devices in boundary layer wind tunnel. Nurizzatul Atikha Rahmat & Nor’azizi Othman (Vol. 11, Issue 1). www.jtse.utm.my
He, G. S., Wang, J. J., Pan, C., Feng, L. H., Gao, Q., & Rinoshika, A. (2017). Vortex dynamics for flow over a circular cylinder in proximity to a wall. Journal of Fluid Mechanics, 812, 698–720. https://doi.org/10.1017/jfm.2016.812
Hohman, T. C., Van Buren, T., Martinelli, L., & Smits, A. J. (2015). Generating an artificially thickened boundary layer to simulate the neutral atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 145, 1–16. https://doi.org/10.1016/j.jweia.2015.05.012
Ismail, A. T., & Kamaruddin, N. M. (2020). Development of a flow visualization technique in wind tunnel for hydrokinetic turbine application. IOP Conference Series: Materials Science and Engineering, 920(1). https://doi.org/10.1088/1757-899X/920/1/012034
Isyumov, N. (1967). The application of the boundary layer wind tunnel to the prediction of wind loading. https://www.researchgate.net/publication/285121067
Kareem, A. A., Abbas, M. K., & Khammas, F. A. (2021). Aerodynamic study of low-speed wind tunnel contraction section: design and manufacturing. IOP Conference Series: Materials Science and Engineering, 1094(1), 012077. https://doi.org/10.1088/1757-899x/1094/1/012077
Kulkarni, V., Sahoo, N., & Chavan, S. D. (2011). Simulation of honeycomb-screen combinations for turbulence management in a subsonic wind tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 99(1), 37–45. https://doi.org/10.1016/j.jweia.2010.10.006
Kumaraswamy, T., Bharawaj, V. V. S. N., Garre, P. (2014). Design and Analysis of Transonic Wind Tunnel. Global Journal of Researches in Engineering, 14(1). https://globaljournals.org/GJRE_Volume14/1-Design-and-Analysis.pdf
Li, X., & Li, Q. S. (2019). Observations of typhoon effects on a high-rise building and verification of wind tunnel predictions. Journal of Wind Engineering and Industrial Aerodynamics, 184, 174–184. https://doi.org/10.1016/j.jweia.2018.11.026
Liu, Y., Cheng, B., & Deng, X. (2013). An application of smoke-wire visualization on a hovering insect wing. Journal of Visualization, 16(3), 185–187. https://doi.org/10.1007/s12650-013-0165-2
Liu, Y., Liu, J., & Gao, F. P. (2023). Strouhal number for boundary shear flow past a circular cylinder in the subcritical flow regime. Ocean Engineering, 269. https://doi.org/10.1016/j.oceaneng.2022.113574
Mat, M. N. H., Mohd-Ghazali, N., Shamsuddin, H. S. & Estelle, P. (2023). Thermofluid behaviour of boron nitride nanotube nanofluid in a microchannel under optimized conditions. Journal of Thermal Analysis and Calorimetry 148, 3035–3044. https://doi.org/10.1007/s10973-022-11472-8
Mat, M. N. H., Nasir, M. F. M., Asmuin, N. Z. (2021a). Response Surface Analysis of DIB Nozzle Geometry on Acoustic Power Level using Central Composite Design of Experiment. Journal of Physics: Conference Series. 2129 012019. http://doi.org/10.1088/1742-6596/2129/1/012019
Mat, M. N. H., Nasir, M. F. M., Sies, M. F. (2021b). Velocity Flow Field Characteristic on Nozzle Cavity using Central Composite Design of Computational Method for Dry Ice Blasting System. Journal of Physics: Conference Series 2129 012020. http://doi.org/10.1088/1742-6596/2129/1/012020
Mathur, N. B., Ramesh, G., & Yajnik, K. S. (1988). Continuous coloured smoxe-wire technique for flow visualisation.
Mehta, R. C. (2021). Numerical simulation of shock wave turbulent boundary layer interaction over flat plate at Mach 6. Journal of The Institution of Engineers (India): Series C. https://doi.org/10.1007/s40032-021-00732-5
Mehta, R. D., & Bradshaw, P. (1979). Design rules for small low speed wind tunnels. Aeronautical Journal, 83(827), 443–449. https://doi.org/10.1017/s0001924000031985
Niemann, H. J. (1993). The boundary layer wind tunnel: an experimental tool in building aerodynamics and environmental engineering. Journal of Wind Engineering and Industrial Aerodynamics, 48.
Rahmat, N. A., Hagishima, A., Ikegaya, N., & Tanimoto, J. (2016). An experimental study on aerodynamic interaction between a boundary layer generated by a smooth and rough wall and a wake behind a spire. Kyushu University Interdisciplinary Graduate School of Engineering Sciences Version: Rights: Kyushu University Interdisciplinary Graduate School of Engineering Sciences Report, 37(2), 19–26. https://doi.org/10.15017/1560669
Rahmat, N. A., Hagishima, A., Ikegaya, N., & Tanimoto, J. (2018). Experimental study on effect of spires on the lateral nonuniformity of mean flow in a wind tunnel. Evergreen, 5(1), 1–15. https://doi.org/10.5109/1929670
Rahmat, N. A., Haji Abdullah, K.K., Khairunizam, K.A. (2023a).  Natural Ventilation in Traditional Malay House: A Study of Flow Pattern by an Enhanced Smoke Wire Technique. In: Sulaiman, S.A. (eds) Energy and Environment in the Tropics. Lecture Notes in Energy, vol 92. Springer, Singapore. https://doi.org/10.1007/978-981-19-6688-0_18
Rahmat, N. A., Ramli, M. R., Hassan, M. H. C., Abdullah, K. K. H., & Khairunizam, K. A. (2023b). Enhanced smoke wire technique with control dripping valve in a small scaled quasi-atmospheric boundary layer wind tunnel. Lecture Notes in Mechanical Engineering, 611–627. https://doi.org/10.1007/978-981-19-14577_47
Rosminahar, S. N, Mat, M. N. H., & M. Yusup, E. (2024). Mesh Refinement for Dynamics Airflow in Health Care. International Journal of Integrated Engineering, 16(6), 90-99. https://penerbit.uthm.edu.my/ojs/index.php/ijie/article/view/17399
Rosminahar, S. N., Mat, M. N. H., Rani, M. F. H., Wong Keng, Y., & Akrami, M. (2025). Influence of Air Changes Per Hours (ACH) on Human Thermal Comfort under Stratum Ventilation Setting in a Single Isolated Wardroom. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 130(2), 90–99. https://doi.org/10.37934/arfmts.130.2.9099
Schneider, S. P. (2003). Development of Quiet-Flow Supersonic Wind Tunnels for Laminar-Turbulent Transition Research: Final Report for NASA Langley Grant NAG-1-1133. https://apps.dtic.mil/sti/pdfs/ADA640235.pdf
Serrano-Aguilera, J. J., García-Ortiz, J. H., Gallardo-Claros, A., Parras, L., & del Pino, C. (2016). Experimental characterization of wingtip vortices in the near field using smoke flow visualizations. Experiments in Fluids, 57(8). https://doi.org/10.1007/s00348-016-2222-9
Settles, G. (1986). Modern development in flow visualization. Aiaa Journal - AIAA J. 24. 1313-1323. https://doi.org/10.2514/3.9437
Serway, R. A. (2006). College physics (Vol. 2). Brooks/Cole, Thomson Learning.
Soria, J., Chiu, W. K., & Norton, M. P. (1990). A study of unsteady laminar boundary layer flow on a flat plate using a smoke-wire/silhoutte flow visualization technique, Experimental Thermal and Fluid Science, 3(3), 291-304. https://doi.org/10.1016/0894-1777(90)90004-Q.
Sumner, D. (2013). Flow above the free end of a surface-mounted finite-height circular cylinder: A review. Journal of Fluids and Structures, 43, 41–63. https://doi.org/10.1016/j.jfluidstructs.2013.08.007
Trinder, M., & Jabbal, M. (2013). Development of a smoke visualisation system for wind tunnel laboratory experiments. International Journal of Mechanical Engineering Education, 41(1), 27–43. https://doi.org/10.7227/IJMEE.41.1.5
Vikneshvaran, Zaki, S. A., Rahmat, N. A., Ali, M. S. M., & Yakub, F. (2020). Evaluation of atmospheric boundary layer in open-loop boundary layer wind tunnel experiment. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 72(72), 79–92. https://doi.org/10.37934/ARFMTS.72.2.7992
Wang, J., Foley, S., Nanos, E. M., Yu, T., Campagnolo, F., Bottasso, C. L., Zanotti, A., & Croce, A. (2017). Numerical and experimental study of wake redirection techniques in a boundary layer wind tunnel. Journal of Physics: Conference Series, 854(1). https://doi.org/10.1088/1742-6596/854/1/012048
Welsh, A. (2013). Low turbulence wind tunnel design and wind turbine wake characterization recommended citation. https://dc.uwm.edu/etd/180
Welzel, M. (2021). Wave-current-induced scouring processes around complex offshore structures. https://doi.org/10.15488/11225
Wu, T. J. (1992). Visualization of Stall Characteristics of Airfoils Using the Smoke-Wire Technique. https://arc.uta.edu/publications/td_files/T-J%20Wu.pdf
Yarusevych, S., Sullivan, P. E., & Kawall, J. G. (2009). Smoke-wire flow visualization in separated flows at relatively high velocities. AIAA Journal, 47(6), 1592–1595. https://doi.org/10.2514/1.43539
Yi, W., Zhou, P., Fang, Y., Guo, J., Zhong, S., Zhang, X., Huang, X., Zhou, G., & Chen, B. (2021). Design and characterization of a multifunctional low-speed anechoic wind tunnel at HKUST. Aerospace Science and Technology, 115. https://doi.org/10.1016/j.ast.2021.106814