Abbasi, H. R., Sharifi Sedeh, E., Pourrahmani, H., & Mohammadi, M. H. (2020). Shape optimization of segmental porous baffles for enhanced thermo-hydraulic performance of shell-and-tube heat exchanger.
Applied Thermal Engineering,
180(July).
https://doi.org/10.1016/j.applthermaleng.2020.115835
Bejan, A. (1996). Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes.
Journal of Applied Physics,
79(3), 1191–1218.
https://doi.org/10.1063/1.362674
Bozorg, M. V., Hossein Doranehgard, M., Hong, K., & Xiong, Q. (2020). CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid.
Renewable Energy,
145, 2598–2614.
https://doi.org/10.1016/j.renene.2019.08.042
Chakraborty, O., & Nath, S. (2024a). Optimizing the thermal performance in parabolic solar trough collectors: investigating the impact of ionic nanofluid and revolving fins inserts.
Clean Technologies and Environmental Policy.
https://doi.org/10.1007/s10098-024-03076-7
Chakraborty, O., & Nath, S. (2024b). Thermal performance simulation of parabolic trough collector with ternary nanofluid flows and half-star-shaped fins inserts in different receivers.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
46(3), 114.
https://doi.org/10.1007/s40430-024-04680-w
Chen, X., Xia, X. L., Liu, H., Li, Y., & Liu, B. (2016). Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer.
Energy Conversion and Management,
114, 20–27.
https://doi.org/10.1016/j.enconman.2016.01.074
Das, S., Verma, N., Pathak, M., & Bhattacharyya, S. (2021). Axially oriented structured porous layers for heat transfer enhancement in a solar receiver tube.
Journal of Thermal Science,
30(5), 1643–1657.
https://doi.org/10.1007/s11630-021-1514-4
Delgado-Torres, A. M., & García-Rodríguez, L. (2007). Comparison of solar technologies for driving a desalination system by means of an organic Rankine cycle.
Desalination,
216(1–3), 276–291.
https://doi.org/10.1016/j.desal.2006.12.013
Ekiciler, R., Arslan, K., & Turgut, O. (2023). Application of nanofluid flow in entropy generation and thermal performance analysis of parabolic trough solar collector: experimental and numerical study.
Journal of Thermal Analysis and Calorimetry,
148(14), 7299–7318.
https://doi.org/10.1007/s10973-023-12187-0,
Esapour, M., Hamzehnezhad, A., Rabienataj Darzi, A. A., & Jourabian, M. (2018). Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system.
Energy Conversion and Management,
171(January), 398–410.
https://doi.org/10.1016/j.enconman.2018.05.086
Esmaeili, Z., Valipour, M. S., Rashidi, S., & Akbarzadeh, S. (2023). Performance analysis of a parabolic trough collector using partial metal foam inside an absorber tube: an experimental study.
Environmental Science and Pollution Research,
30(38), 89794–89804.
https://doi.org/10.1007/s11356-023-28732-1
Guerraiche, D., Guerraiche, K., Driss, Z., Chibani, A., Merouani, S., & Bougriou, C. (2022). Heat Transfer Enhancement in a Receiver Tube of Solar Collector Using Various Materials and Nanofluids.
Engineering, Technology and Applied Science Research,
12(5), 9282–9294.
https://doi.org/10.48084/etasr.5214
Hatami, M., Geng, J., & Jing, D. (2018). Enhanced efficiency in Concentrated Parabolic Solar Collector (CPSC) with a porous absorber tube filled with metal nanoparticle suspension.
Green Energy and Environment,
3(2), 129–137.
https://doi.org/10.1016/j.gee.2017.12.002
Heyhat, M. M., Valizade, M., Abdolahzade, S., & Maerefat, M. (2020). Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam.
Energy,
192.
https://doi.org/10.1016/j.energy.2019.116662
Hooshmand, A., Zahmatkesh, I., Karami, M., & Delfani, S. (2021). Exergy analysis of a nanofluid – based direct absorption solar collector (DASC) Occupied by Porous Foam.
Challenges in Nano and Micro Scale Science and Technology, 9(1), 1–11.
https://doi.org/10.22111/CNMST.2021.38759.1212
Jamal-Abad, M. T., Saedodin, S., & Aminy, M. (2017). Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media.
Renewable Energy,
107, 156–163.
https://doi.org/10.1016/j.renene.2017.02.004
Jamal-Abad, M. T., Saedodin, S., & Aminy, M. (2018). Variable conductivity in forced convection for a tube filled with porous media: A perturbation solution.
Ain Shams Engineering Journal,
9(4), 689–696.
https://doi.org/10.1016/j.asej.2016.03.019
Kuwahara, F., Shirota, M., & Nakayama, A. (2001a). A numerical study of interfacial convective heat transfer coefficient in two-energy equation model of porous media.
International Journal of Heat and Mass Transfer,
44(6), 1153–1159.
https://doi.org/10.1299/kikaib.66.1430
Kuwahara, F., Shirota, M., & Nakayama, A. (2001b). A numerical study of interfacial convective heat transfer coefficient in two-energy equation model of porous media.
International Journal of Heat and Mass Transfer,
44(6), 1153–1159.
https://doi.org/10.1299/kikaib.66.1430
Maxwell, J. C. (1881). A treatise on electricity and magnetism. Oxford: Clarendon Press.
Mwesigye, A., Bello-Ochende, T., & Meyer, J. P. (2013). Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios.
Energy,
53, 114–127.
https://doi.org/10.1016/j.energy.2013.03.006
Naaim, S., Ouhammou, B., El Merabet, Y., Aggour, M., Mihi, M., El Mers, E. M., & Daouchi, B. (2025). Optimization of nanoparticle concentration for enhanced performance of Therminol® VP-1-based nanofluids in parabolic trough systems.
Results in Engineering,
26.
https://doi.org/10.1016/j.rineng.2025.105051
Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles.
Experimental Heat Transfer,
11(2), 151–170.
https://doi.org/10.1080/08916159808946559
Peng, H., Li, M., & Liang, X. (2020). Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam.
Energy,
211.
https://doi.org/10.1016/j.energy.2020.119046
Peng, H., Li, M., Hu, F., & Feng, S. (2021). Performance analysis of absorber tube in parabolic trough solar collector inserted with semi-annular and fin shape metal foam hybrid structure.
Case Studies in Thermal Engineering,
26(April), 101112.
https://doi.org/10.1016/j.csite.2021.101112
Ravi Kumar, K., & Reddy, K. S. (2012). Effect of porous disc receiver configurations on performance of solar parabolic trough concentrator.
Heat and Mass Transfer/Waerme- Und Stoffuebertragung,
48(3), 555–571.
https://doi.org/10.1007/s00231-011-0903-8
Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Laminar Flow Forced Convection in Ducts: Vol. Suppl. 1.
Sheikholeslami, M., & Khalili, Z. (2025). Simulation of a photovoltaic panel with a novel cooling duct using ternary nanofluid and integrated with a thermoelectric generator.
Journal of the Taiwan Institute of Chemical Engineers,
170, 105982.
https://doi.org/https://doi.org/10.1016/j.jtice.2025.105982
Sheikholeslami, M., Khalili, Z., Salehi, F. & Momayez, L. (2025). Simulation of sustainable solar thermal storage system involving photovoltaic panel equipped with nanofluid-based splitter considering self-cleaning coating.
Sustainable Cities and Society,
119, 106100.
https://doi.org/https://doi.org/10.1016/j.scs.2024.106100
Tayebi, R., Akbarzadeh, S., & Valipour, M. S. (2019). Numerical investigation of efficiency enhancement in a direct absorption parabolic trough collector occupied by a porous medium and saturated by a nanofluid.
Environmental Progress and Sustainable Energy,
38(2), 727–740.
https://doi.org/10.1002/ep.13010
Tayebi, T., & Chamkha, A. J. (2016). Numerical Heat Transfer, Part A: Applications Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids.
Numerical Heat Transfer, Part A: Applications,
0(0), 1–16.
https://doi.org/10.1080/10407782.2016.1230423
Valizade, M., Heyhat, M. M., & Maerefat, M. (2020). Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption.
Renewable Energy,
145, 261–269.
https://doi.org/10.1016/j.renene.2019.05.112
Wakao, N., & Kagei, S. (1982). Heat and Mass Transfer in Packed Beds. Gordon and Breach Science Publishers.
Wang, P., Liu, D. Y., & Xu, C. (2013). Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams.
Applied Energy,
102, 449–460.
https://doi.org/10.1016/j.apenergy.2012.07.026
Webb, R. L. (1981). Performance evaluation criteria for use of enhanced heat trensfer surfaces in heat exhanger design.
International Journal of Heat and Mass Transfer, 24 (4).
https://doi.org/10.1016/0017-9310(81)90015-6
Wei, Y. K., Zhang, J. D., Cheng, Z. D., Gao, Q. P., & He, Y. L. (2024). Numerical study on novel parabolic trough solar receiver-reactors with double-channel structure catalyst particle packed beds by developing actual three-dimensional catalyst porosity distributions.
Chemical Engineering Science,
287(January), 119693.
https://doi.org/10.1016/j.ces.2023.119693