Aerodynamics of UH-60 Helicopter-inlet Integration in Ground Effect

Document Type : Regular Article

Authors

1 Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, Jiangsu Province, China

2 State Key Laboratory of Aerodynamics, Mianyang, 621000, Sichuan Province, China

10.47176/jafm.18.12.3557

Abstract

This paper describes a comprehensive numerical investigation into the aerodynamic characteristics of a full-scale UH-60 helicopter–inlet integrated flow field under the ground effect. The impact of both the internal and external flow parameters on the coupled flow field is analyzed, and the aerodynamic performance, streamline distributions, surface pressure, velocity fields, and vorticity magnitude are examined in detail. The numerical results demonstrate that the ground effect effectively reduces the flow losses within the air intake. Furthermore, the ground effect exhibits a significant attenuation in the presence of incoming flow, accompanied by substantial modifications in the three-dimensional flow field characteristics at the entrance of the intake. The internal parameters of the intake exert a substantial influence on the coupled flow field dynamics. This research elucidates the aerodynamic characteristics of the coupled interference in the near-ground flow fields across various operational conditions, providing valuable insights for helicopter flight operations under the ground effect.

Keywords

Main Subjects


Chen, Q., Hu, T., Liu, P., Liu, Y., Qu, Q., Guo, H., & Akkermans, R. A. D. (2020). Experiments on asymmetric vortex pair interaction with the ground. Experiments in Fluids, 61(6), 1-22. https://doi.org/10.1007/s00348-020-02987-7
Duffy, R. J., & Shattuck, B. F. (1975). Integral engine inlet particle separator. (USAAMRDL-TR-75-31B). U. S. A. A. M. R. a. D. Laboratory.
Han, H., Xiang, C., Xu, B., & Yu, Y. (2021). Experimental and computational investigation on comparison of micro-scale open rotor and shrouded rotor hovering in ground effect. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 235(5), 553-565. https://doi.org/10.1177/0954410020949292
Kim, J. M., & Komerath, N. M. (1995). Summary of the interaction of a rotor wake with a circular cylinder. AIAA Journal, 33(3), 470-478. https://doi.org/10.2514/3.12600
Kutz, B. M., Bensing, F., Keßler, M., & Krämer, E. (2013). CFD calculation of a helicopter rotor hovering in ground effect. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 121, 297-304. https://doi.org/10.1007/978-3-642-35680-3_36
Lee, T. E., Leishman, J. G., & Ramasamy, M. (2010). Fluid dynamics of interacting blade tip vortices with a ground plane. Journal of the American Helicopter Society, 55(2), 022005. https://doi.org/10.4050/JAHS.55.022005
Matus-Vargas, A., Rodriguez-Gomez, G., & Martinez-Carranza, J. (2021). Ground effect on rotorcraft unmanned aerial vehicles: a review. Intelligent Service Robotics, 14(1), 99-118. https://doi.org/10.1007/s11370-020-00344-5
Milluzzo, J. I. (2012). The effect of blade tip shapes on rotor in-ground-effect aerodynamics [Master’s thesis, University of Maryland]. https://www.proquest.com/dissertations-theses/effect-blade-tip-shapes-on-rotor-ground/docview/1197735243/se-2?accountid=16605
Milluzzo, J. I., & Leishman, J. G. (2017). Vortical sheet behavior in the wake of a rotor in ground effect. AIAA Journal, 55(1), 24-35. https://doi.org/10.2514/1.J054498
Misté, G. A., Nibale, T., Garavello, A., & Benini, E. (2012). Assessment of the engine installation performance of a redesigned tilt-rotor intake system. American Helicopter Society 68th Annual Forum, Fort Worth, Texas.
Pasquali, C., Gennaretti, M., Bernardini, G., & Serafini, J. (2023). State-space dynamic inflow modelling for hovering rotors in fixed and moving-ground effect. Aerospace Science and Technology, 140, 108414. https://doi.org/10.1016/j.ast.2023.108414
Ramasamy, M., Potsdam, M., & Yamauchi, G. K. (2015, May 21-23). Measurements to Understand the flow mechanisms contributing to tandem-rotor outwash. AHS 71st Annual Forum, Virginia Beach, VA, United States. https://doi.org/10.4050/F-0071-2015-10100
Rovere, F., Barakos, G. N., & Steijl, R. (2020). CFD analysis of a micro-rotor in ground effect. AIAA Scitech 2020 Forum, Orlando, FL, United States. https://doi.org/10.2514/6.2020-1793
Silva, P. A. S. F., Tsoutsanis, P.,  & Antoniadis, A. F. (2022). Numerical investigation of full helicopter with and without the ground effect. Aerospace Science and Technology, 122, 107401. https://doi.org/10.1016/j.ast.2022.107401
Suresh, A. (2020). A Simple model of rotor upwash in ground effect. AIAA Scitech 2020 Forum. Orlando, FL, United States. https://doi.org/10.2514/6.2020-1999
Tanabe, Y., Otani, I., & Saito, S. (2010). Validation of computational results of rotor/fuselage interaction analysis using rFlow3D code. Japan Aerospace Exploration Agency Tokyo, Japan. https://www.proquest.com/other-sources/validation-computational-results-rotor-fuselage/docview/756657804/se-2?accountid=16605
Thomas, S., Amiraux, M., & Baeder, J. D. (2013). Modeling the two-phase flowfield beneath a hovering rotor on graphics processing units using a FVMRANS hybrid methodology. 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, United States. https://doi.org/10.2514/6.2013-2853
Wang, Y., Liu, P., Hu, T., Qu, Q., Chen, Q., & Akkermans, R. (2019). Experimental Investigations on the interaction of the single/co-rotating vortex with the ground. AIAA Journal, 57(2), 499-512. https://doi.org/10.2514/1.J057140
Whitehouse, D., Yu, J., Gilmore, P., Dorsett, M., McClure, K., & SAIC, R. A. (2009, May 27–29). A high fidelity brownout model for real-time flight simulations and trainers American Helicopter Society 65th Annual Forum, Grapevine, TX. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1e1f2b575f05efac5ea27d6ca65d61127976c267
Wu, Z., Zhang, T., Tan, H., Zhou, H., Chen, W., & Xie, M. (2024). Hovering rotor aerodynamics in extreme ground effect. Chinese Journal of Aeronautics, 37(7), 204-219. https://doi.org/10.1016/j.cja.2024.02.020
Yi, Y., Liu, P., Hu, T., Qu, Q., & Akkermans, R. A. D. (2018). Experimental investigations on co-rotating vortex pair merger in convergent/divergent channel flow with single-side-wall deflection. Experiments in Fluids, 59(12), 1-18. https://doi.org/10.1007/s00348-018-2643-8