Chen, Q., Hu, T., Liu, P., Liu, Y., Qu, Q., Guo, H., & Akkermans, R. A. D. (2020). Experiments on asymmetric vortex pair interaction with the ground.
Experiments in Fluids,
61(6), 1-22.
https://doi.org/10.1007/s00348-020-02987-7
Duffy, R. J., & Shattuck, B. F. (1975). Integral engine inlet particle separator. (USAAMRDL-TR-75-31B). U. S. A. A. M. R. a. D. Laboratory.
Han, H., Xiang, C., Xu, B., & Yu, Y. (2021). Experimental and computational investigation on comparison of micro-scale open rotor and shrouded rotor hovering in ground effect.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
235(5), 553-565.
https://doi.org/10.1177/0954410020949292
Kim, J. M., & Komerath, N. M. (1995). Summary of the interaction of a rotor wake with a circular cylinder.
AIAA Journal,
33(3), 470-478.
https://doi.org/10.2514/3.12600
Kutz, B. M., Bensing, F., Keßler, M., & Krämer, E. (2013). CFD calculation of a helicopter rotor hovering in ground effect.
Notes on Numerical Fluid Mechanics and Multidisciplinary Design,
121, 297-304.
https://doi.org/10.1007/978-3-642-35680-3_36
Lee, T. E., Leishman, J. G., & Ramasamy, M. (2010). Fluid dynamics of interacting blade tip vortices with a ground plane.
Journal of the American Helicopter Society,
55(2), 022005.
https://doi.org/10.4050/JAHS.55.022005
Matus-Vargas, A., Rodriguez-Gomez, G., & Martinez-Carranza, J. (2021). Ground effect on rotorcraft unmanned aerial vehicles: a review.
Intelligent Service Robotics,
14(1), 99-118.
https://doi.org/10.1007/s11370-020-00344-5
Milluzzo, J. I., & Leishman, J. G. (2017). Vortical sheet behavior in the wake of a rotor in ground effect.
AIAA Journal,
55(1), 24-35.
https://doi.org/10.2514/1.J054498
Misté, G. A., Nibale, T., Garavello, A., & Benini, E. (2012). Assessment of the engine installation performance of a redesigned tilt-rotor intake system. American Helicopter Society 68th Annual Forum, Fort Worth, Texas.
Pasquali, C., Gennaretti, M., Bernardini, G., & Serafini, J. (2023). State-space dynamic inflow modelling for hovering rotors in fixed and moving-ground effect.
Aerospace Science and Technology,
140, 108414.
https://doi.org/10.1016/j.ast.2023.108414
Ramasamy, M., Potsdam, M., & Yamauchi, G. K. (2015, May 21-23).
Measurements to Understand the flow mechanisms contributing to tandem-rotor outwash. AHS 71st Annual Forum, Virginia Beach, VA, United States.
https://doi.org/10.4050/F-0071-2015-10100
Rovere, F., Barakos, G. N., & Steijl, R. (2020).
CFD analysis of a micro-rotor in ground effect. AIAA Scitech 2020 Forum, Orlando, FL, United States.
https://doi.org/10.2514/6.2020-1793
Silva, P. A. S. F., Tsoutsanis, P., & Antoniadis, A. F. (2022). Numerical investigation of full helicopter with and without the ground effect.
Aerospace Science and Technology, 122, 107401.
https://doi.org/10.1016/j.ast.2022.107401
Thomas, S., Amiraux, M., & Baeder, J. D. (2013). Modeling the two-phase flowfield beneath a hovering rotor on graphics processing units using a FVMRANS hybrid methodology.
21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, United States.
https://doi.org/10.2514/6.2013-2853
Wang, Y., Liu, P., Hu, T., Qu, Q., Chen, Q., & Akkermans, R. (2019). Experimental Investigations on the interaction of the single/co-rotating vortex with the ground.
AIAA Journal,
57(2), 499-512.
https://doi.org/10.2514/1.J057140
Whitehouse, D., Yu, J., Gilmore, P., Dorsett, M., McClure, K., & SAIC, R. A. (2009, May 27–29).
A high fidelity brownout model for real-time flight simulations and trainers American Helicopter Society 65th Annual Forum, Grapevine, TX.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1e1f2b575f05efac5ea27d6ca65d61127976c267
Wu, Z., Zhang, T., Tan, H., Zhou, H., Chen, W., & Xie, M. (2024). Hovering rotor aerodynamics in extreme ground effect.
Chinese Journal of Aeronautics,
37(7), 204-219.
https://doi.org/10.1016/j.cja.2024.02.020
Yi, Y., Liu, P., Hu, T., Qu, Q., & Akkermans, R. A. D. (2018). Experimental investigations on co-rotating vortex pair merger in convergent/divergent channel flow with single-side-wall deflection.
Experiments in Fluids,
59(12), 1-18.
https://doi.org/10.1007/s00348-018-2643-8