Aerothermal Characteristics of Trailing Edge Region Film Cooling on a Nozzle Guide Vane

Document Type : Regular Article

Authors

Mechanical engineering Department, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India

10.47176/jafm.18.12.3486

Abstract

Maintaining the trailing edge of the first stage high-pressure nozzle guide vane (NGV) in high-temperature regions (̴ 2200K) is always a challenging task compared to the other locations. This paper investigates the aero-thermal characteristics of a nozzle guide vane (NGV) with an innovative film cooling configuration to optimize cooling performance in high-temperature environments. The study examines the effects of varying blowing ratios (0.69, 1.07, 1.67, and 2.06) on total pressure losses and cooling effectiveness by replacing traditional trailing edge ejection with two rows of film-cooling holes in the post-throat region. Computational analysis using ANSYS Fluent revealed that lower blowing ratios maintain better film attachment and increase total pressure losses with an increase in the blowing ratio up to 1.67 and a drop in the losses at higher blowing ratios (2.06) due to the increasing coolant jet momentum, better mixing with the mainstream due to jet lift-off. The 20% decrease in the total pressure losses using the novel film configuration compared to the trailing edge ejection signifies the study. These findings highlight the importance of optimizing blowing ratios and hole configurations to achieve efficient cooling without compromising aerodynamic performance, providing valuable insights for designing advanced cooling systems in gas turbine engines.

Keywords

Main Subjects


 
Aminossadati, S. M., & Mee, D. J. (2013). An experimental study on aerodynamic performance of turbine nozzle guide vanes with trailing-edge spanwise ejection. Journal of Turbomachinery, 135(3). https://doi.org/10.1115/1.4006663
Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, Transactions of the ASME, 130(7), 0780011–0780014. https://doi.org/10.1115/1.2960953
Dawei, C., Qiang, D., Qingzong, X., Guangyao, X., Haoyang, L., & Hongye, L. (2023). Film cooling and aerodynamic loss performance of turbine vanes with fan-shaped and wave-trenched holes. Applied Thermal Engineering, 230. https://doi.org/10.1016/j.applthermaleng.2023.120643
Day, C. R. B., Oldfield, M. L. G., Lock, G. D., & Dancer, S. N. (1998). Efficiency Measurements of an Annular Nozzle Guide Vane Cascade With Different Film Cooling Geometries. Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration. Stockholm, Sweden. June 2–5, 1998. V004T09A088. ASME. https://doi.org/10.1115/98-GT-538
Day, C., Oldfield, M. & Lock, G. (2000) Aerodynamic performance of an annular cascade of film cooled nozzle guide vanes under engine representative conditions. Experiments in Fluids 29, 117–129. https://doi.org/10.1007/s003489900062
Day, R. C. R. B., Oldfield, M. L. G., & Lock, G. D. (1997). The Influence of Film Cooling on the Efficiency of an Annular Nozzle Guide Vane Cascade. http://asmedigitalcollection.asme.org/GT/proceedingspdf/GT1997/78682/V001T03A104/2408543/v001t03a104-97-gt-521.pdf
Du, W., Luo, L., Jiao, Y., Wang, S., Li, X., & Sunden, B. (2021). Heat transfer in the trailing region of gas turbines – A state-of-the-art review. Applied Thermal Engineering, 199. https://doi.org/10.1016/j.applthermaleng.2021.117614
Gao, J., Wei, M., Liu, Y., Zheng, Q., & Dong, P. (2018). Experimental and numerical investigations of hole injection on the suction side throat of transonic turbine vanes in a cascade with trailing edge injection. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(8), 1454–1466. https://doi.org/10.1177/0954410017694918
Gudla, B., & Pujari, A. K. (2025). Influence of film cooling row locations on the thermal performance of nozzle guide vanes: an experimental study. Heat Transfer Research, 56(8), 73–94. https://doi.org/10.1615/HeatTransRes.2025056945
Han, J. C., Dutta, S., & Ekkad, S. (2012). Gas Turbine Heat Transfer and Cooling Technology. Second Edition. CRC Press.
Hartsel, J. E. (1972). Prediction effects of mass-transfer cooling on the blade row efficiency of turbine airfoils. AIAA 10th Aerospace science meeting, January 17-19, California, AIAA.
He, W., Deng, Q., Zhou, W., Gao, T., & Feng, Z. (2019). Film cooling and aerodynamic performances of a turbine nozzle guide vane with trenched cooling holes. Applied Thermal Engineering, 150, 150–163. https://doi.org/10.1016/j.applthermaleng.2019.01.002
Ito, S., Eckert, E. R. G., & Goldstein, R. J. (1980). Aerodynamic loss in a gas turbine stage with film cooling. http://www.asme.org/about-asme/terms-of-use
Kim, G. M., Jeong, J. Y., Kang, Y. J., & Kwak, J. S. (2023). Comparison of aerodynamic loss of a gas turbine vane with various trailing edge cooling schemes. Aerospace, 10(2). https://doi.org/10.3390/aerospace10020143
Kukutla, P. R., & Prasad, B. V. S. S. S. (2019). Fluid thermal network studies on cooled nozzle guide vane. Proceedings of the ASME 2019 Gas Turbine India Conference. Volume 1: Compressors, Fans, and Pumps; Turbines; Heat Transfer; Structures and Dynamics. Chennai, Tamil Nadu, India. December 5–6, 2019. V001T03A014.ASME. https://doi.org/10.1115/GTINDIA2019-2651.
Lanzillotta, F., Sciacchitano, A., & Rao, A. G. (2017). Effect of film cooling on the aerodynamic performance of an airfoil. International Journal of Heat and Fluid Flow, 66, 108–120. https://doi.org/10.1016/j.ijheatfluidflow.2017.05.011
Liu, J., Wang, P., Wang, P., Liu, J., Du, Q., Wang, H., Wang, Z., Shen, X., & Zhu, J. (2025). Experimental and numerical study on the trailing edge cut-back cooling characteristics with POD analysis. Journal of Thermal Science, 34 (3). https://doi.org/10.1007/s11630-025-2024-6
Pujari, A. K. (2019). CFD study of combined impingement and film cooling flow on the internal surface temperature distribution of a vane. International Journal of Turbo and Jet Engines. https://doi.org/10.1515/tjj-2019-0010  
Ramesh, S., LeBlanc, C., Narzary, D., Ekkad, S., & Alvin, M. A. (2017). Film cooling performance of tripod antivortex injection holes over the pressure and suction surfaces of a nozzle guide vane. Journal of Thermal Science and Engineering Applications, 9(2). https://doi.org/10.1115/1.4035290
Saha, R., Fridh, J., Fransson, T., Mamaev, B. I., & Annerfeldt, M. (2013). Suction and pressure side film cooling influence on vane aero performance in a transonic annular cascade. Proceedings of the ASME Turbo Expo. 6. https://doi.org/10.1115/GT2013-94319.
Stephan, B., Kru¨ ckels, J. R., & Gritsch, M. (2010). Investigation of aerodynamic losses and film cooling effectiveness for a ngv profile. GT2010-22810 Power  for land, sea and air. http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/gt2010/70457/
Uzol, O., & Camci, C. (2001). Aerodynamic loss characteristics of a turbine blade with trailing edge coolant ejection: Part 2- External aerodynamics, total pressure losses, and predictions. Journal of Turbomachinery, 123(2), 249–257. https://doi.org/10.1115/1.1351817
Yao, C. Y., Zhang, Z., Zhang, B. L., & Zhu, H. R. (2021). Heat transfer characteristic of a fully cooled turbine vane. Case Studies in Thermal Engineering, 28. https://doi.org/10.1016/j.csite.2021.101547
Yeranee, K., & Rao, Y. (2023). Turbulent flow and heat transfer enhancement for turbine blade trailing edge cooling with gyroid-type triply periodic minimal surfaces. Journal of Engineering for Gas Turbines and Power, 145(7). https://doi.org/10.1115/1.4062157
Yıldız, F., Alpman, E., Kavurmacıoğlu, L., & Camci, C. (2024). Aerothermal optimization of film cooling hole locations on the squealer tip of an HP turbine blade. Journal of Thermal Science and Engineering Applications 16(5), 051001. https://doi.org/10.1115/1.4064431
Zhang, S., Ding, S., Qiu, T., Liu, C., & Gan, C. (2025). Numerical investigation on aerothermal performances of film cooled high pressure turbine vane under inlet non-uniformities. International Journal of Heat and Mass Transfer, 237. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126398