Abdullah, Z., Keeley, A. R., Coulibaly, T. Y., & Managi, S. (2024). The impact of fuel cell vehicles deployment on road transport greenhouse gas emissions through 2050: Evidence from 15 G20 countries.
Journal of Environmental Management,
370, 122660.
https://doi.org/10.1016/j.jenvman.2024.122660
Abedin, T., Pasupuleti, J., Paw, J. K. S., Tak, Y. C., Mahmud, M., Abdullah, M. P., & Nur-E-Alam, M. (2025). Proton exchange membrane fuel cells in electric vehicles: Innovations, challenges, and pathways to sustainability.
Journal of Power Sources,
640, 236769.
https://doi.org/10.1016/j.jpowsour.2025.236769
Al-Obaidi, A. R. (2023). Experimental diagnostic of cavitation flow in the centrifugal pump under various impeller speeds based on acoustic analysis method.
Archives of Acoustics,
48(3), 159-170.
https://doi.org/10.24425/aoa.2023.145234
Al-Obaidi, A. R. (2024a). Effect of different guide vane configurations on flow field investigation and performances of an axial pump based on CFD analysis and vibration investigation.
Experimental Techniques,
48, 69–88.
https://doi.org/10.1007/s40799-023-00641-5
Al-Obaidi, A. R. (2024b). Evaluation and investigation of hydraulic performance characteristics in an axial pump based on CFD and acoustic analysis.
Processes,
12(1), 129.
https://doi.org/10.3390/pr12010129
Al-Obaidi, A. R., & Alhamid, J. (2023) Investigation of the main flow characteristics mechanism and flow dynamics within an axial flow pump based on different transient load conditions.
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 47, 1397–1415.
https://doi.org/10.1007/s40997-022-00586-x
Al-Obaidi, A. R., & Alhamid, J. (2024). Analysis of unsteady internal flow characteristics in axial pump with varying number of blades using computational modelling and vibration techniques.
Flow Measurement and Instrumentation,
99, 102654, ISSN 0955-5986.
https://doi.org/10.1016/j.flowmeasinst.2024.102654
Al-Obaidi, A. R., & Alhamid, J. (2025). Experimental and simulation analyses of the hydraulic complex internal flow characteristics in an axial pump based on varying frequency vibration ranges technique.
International Journal on Interactive Design and Manufacturing (IJIDeM) 19, 3661–3681.
https://doi.org/10.1007/s12008-024-02012-9
Al-Obaidi, A. R., Alhamid, J., & Khalaf, H. (2024). Unsteady behaviour and plane blade angle configurations' effects on pressure fluctuations and internal flow analysis in axial flow pumps.
Alexandria Engineering Journal,
99, 83-107, ISSN 1110-0168.
https://doi.org/10.1016/j.aej.2024.04.048
Al-Obaidi, A. R., Khalaf, H., & Alhamid, J. (2023, June). Investigation of the influence of varying operation configurations on flow behaviors characteristics and hydraulic axial-flow pump performance. Proceedings of the 4th International Conference on Science Education in The Industrial Revolution (Vol. 4).
Anbarsooz, M., Amiri, M., & Benini, E. (2024). A numerical investigation on the effects of vaned diffusers on the aerodynamic performance of a low pressure-ratio methane centrifugal compressor.
Journal of Applied Fluid Mechanics,
17(12), 2545-2562.
https://doi:10.47176/jafm.17.12.2715
Boroujerdi, A., Simsek, Y., Bahri, P. A., & Urmee, T. (2025). Transitioning Australia’s land freight transport: Competition of fuel cell electric, battery electric, and internal combustion engine vehicles,
Energy Conversion and Management,
333, 119798.
https://doi.org/10.1016/j.enconman.2025.119798
Chen, Z., Huang, H., Chen, Q., Peng, X., & Feng, J. (2023). Novel multidisciplinary design and multi-objective optimization of centrifugal compressor used for hydrogen fuel cells.
International Journal of Hydrogen Energy, 12444-12460.
https://doi.org/10.1016/j.ijhydene.2022.11.312
Cunningham, J. M., Hoffman, M. A., & Friedman, D. J. (2001). A Comparison of high-pressure and low-pressure operation of PEM fuel cell systems.
SAE Transactions,
110, 464–470.
http://www.jstor.org/stable/44724322
Eckardt, D. (1975). Instantaneous measurements in the jet-wake discharge flow of a centrifugal compressor impeller.
Journal of Engineering for Gas Turbines & Power,
97(3), 337–345.
https://doi.org/10.1115/1.3445999
Eckardt, D. (1976). Detailed flow investigations within a high-speed centrifugal compressor impeller.
Journal of Flu ids Engineering,
98(3), 390–399.
https://doi.org/10.1115/1.3448334
Esfe, M. H., Motallebi, S. M., & Toghraie, D. (2022). Modeling and optimization of dynamic viscosity of oil-based nanofluids containing alumina particles and carbon nanotubes by response surface methodology (RSM).
Korean Journal of Chemical Engineering,
39(10), 2800-2809.
https://doi.org/10.1007/s11814-022-1156-6
Guo, S., Duan, F., Tang, H., Lim, S., & Yip, M. (2014). Multi-objective optimization for centrifugal compressor of mini turbojet engine.
Aerospace Science and Technology,
39, 414-425, ISSN 1270-9638.
https://doi.org/10.1016/j.ast.2014.04.014.
Hong, S., Mugabi, J., & Jeong, J. H. (2022). Numerical study on vortical flow structure and performance enhancement of centrifugal compressor impeller.
Applied Sciences,
12(15), 7755.
https://doi.org/10.3390/app12157755
Islam, Q. N. U., Ahmed, A., & Abdullah, S. M. (2021). Optimized controller design for islanded microgrid using non-dominated sorting whale optimization algorithm (NSWOA).
Ain Shams Engineering Journal,
12(4), 3677-3689.
https://doi.org/10.1016/j.asej.2021.01.035
Li, X., Huang, N., Han, W., Tong, D., Zhang, Y., & Zhang, J. (2025). Numerical investigation of the impact of intake pipelines on the performance and flow characteristics of a centrifugal compressor.
Journal of Applied Fluid Mechanics,
18(6), 1483-1501.
https://doi.org/10.47176/jafm.18.6.3150
Liu, Y., Zhao, Y., Yang, Q., Liu, G., Li, L., & Gao, Z. (2022). Performance study of centrifugal air compressor for proton exchange membrane fuel cell systems.
Energy Science & Engineering,
10(1), 208-218.
https://doi.org/10.1002/ese3.1023
Liu, Z., & Wang, S. (2019). Research on the stall signal recognition of centrifugal impeller by spatial fourier analysis. Journal of Tianjin University (Science and Technology), 52(4), 353-360.
Ma, C., Yang, Z., Jiao, K., Liu, Z., & Du, Q. (2021). Multi-objective optimization of the centrifugal compressor impeller in 130 kW PEMFC through coupling SVM with NSGA -III algorithms.
International Journal of Green Energy,
18(13), 1383–1395.
https://doi.org/10.1080/15435075.2021.1904942
Ma, X., Chen, Z., & Zhao, Y. (2022). Optimal design of axially mixed excitation double salient pole aero-generator based on response surface method.
Aeronautical Science & Technology,
33(10), 74-81.
https://doi:10.19452/j.issn1007-5453.2022.10.010.
Manzo, D., Thai, R., Le, H. T., & Venayagamoorthy, G. K. (2025). Fuel cell technology review: Types, economy, applications, and vehicle-to-grid scheme.
Sustainable Energy Technologies and Assessments,
75, 104229.
https://doi.org/10.1016/j.seta.2025.104229
Munson, B. R., Okiishi, T. H., Huebsch, W. W., & Rothmayer, A. P. (2013). Fluid Mechanics (pp. 271-274). Singapore: Wiley.
Niveditha, P., & Gopi, B. S. (2023). Effect of different types of external guide vanes on the performance of high-pressure centrifugal compressor.
Journal of Applied Fluid Mechanics,
16(12), 2556-2568.
https://doi.org/10.47176/jafm.16.12.1814
Soylemez, M. E., Behçet, R., & Parlak, Z. (2024). Analysis and optimization of the performances of the tandem blade radial compressor using the CFD.
Applied Sciences,
14(10), 4256.
https://doi.org/10.3390/app14104256
Sun, X., Wang, H., Fu, J., Xia, Y., & Liu, J. (2024). Many-objective optimization for structural parameters of the fuel cell air compressor based on the Stacking model under multiple operating conditions.
Applied Thermal Engineering,
245, 122786, ISSN 1359-4311.
https://doi.org/10.1016/j.applthermaleng.2024.122786
Tang, H., & Yang, S. (2018). Optimizing three-dimensional constrained ordered weighted averaging aggregation problem with bounded variables.
Mathematics,
6(9), 172.
https://doi:10.3390/math6090172.
Wu, Y., Bao, H., Fu, J., Wang, X., & Liu, J. (2023). Review of recent developments in fuel cell centrifugal air compressor: Comprehensive performance and testing techniques.
International Journal of Hydrogen Energy,
48(82), 32039-32055.
https://doi.org/10.1016/j.ijhydene.2023.04.262
Yu, W., Sichuan, X., & Ni, H. (2015). Air compressors for fuel cell vehicles: An systematic review.
SAE International Journal of Alternative Powertrains,
4(1), 115-122.
http://www.jstor.org/stable/26169070
Yuan, W., Lu, X., Qiu, Y., Zhang, Q., Yang, X., Wang, Y., & Zhang, L. (2025). Exploration of performance optimization strategies for micro-centrifugal compressors in hydrogen fuel cells: A synergistic analysis combining one-dimensional design and three-dimensional flow fields.
International Journal of Hydrogen Energy,
131, 229-244.
https://doi.org/10.1016/j.ijhydene.2025.04.318
Zhang, Y., Chen, J., Shu, Y., Wang, Z., Yang, H., & Wei, Y. (2024). Effects of inlet tip clearance on internal flow characteristic and aerodynamic performance of centrifugal compressor.
Journal of Applied Fluid Mechanics,
18(1), 274-289.
https://doi:10.47176/jafm.18.1.2590