Abdelall, F., Hahn, G., Ghiaasiaan, S., Abdel-Khalik, S., Jeter, S., Yoda, M., & Sadowski, D. (2005). Pressure drop caused by abrupt flow area changes in small channels.
Experimental thermal and fluid science,
29(4), 425-434.
https://doi.org/10.1016/j.expthermflusci.2004.05.001
Akhlaghi, M., Mohammadi, V., Nouri, N. M., Taherkhani, M., & Karimi, M. (2019). Multi-Fluid VoF model assessment to simulate the horizontal air–water intermittent flow.
Chemical Engineering Research and Design,
152, 48-59.
https://doi.org/10.1016/j.cherd.2019.09.031
Al'Ferov, N., & Shul'Zhenko, Y. N. (1977). Pressure drops in two-phase flows through local resistances. Fluid Mechanics Soviet Research, 6, 20-33.
Amini, Y., Ghazanfari, V., Heydari, M., Shadman, M. M., Khamseh, A. G., Khani, M. H., & Hassanvand, A. (2023). Computational fluid dynamics simulation of two-phase flow patterns in a serpentine microfluidic device.
Scientific Reports,
13(1), 9483.
https://doi.org/10.1038/s41598-023-36672-6
Attou, A., & Bolle, L. (1995). Evaluation of the two-phase pressure loss across singularities. ASME-Publications-Fed, 210, 121-128.
Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G. A., & Rossetto, L. (2002). Condensation of halogenated refrigerants inside smooth tubes.
Hvac&R Research,
8(4), 429-451.
https://doi.org/10.1080/10789669.2002.10391299
Chen, Y., Yang, K. S., Chang, Y.-J., & Wang, C. C. (2001). Two-phase pressure drop of air–water and R-410A in small horizontal tubes.
International Journal of Multiphase Flow,
27(7), 1293-1299.
https://doi.org/10.1016/S0301-9322(01)00004-0
Cheng, L., Ribatski, G., Quibén, J. M., & Thome, J. R. (2008b). New prediction methods for CO2 evaporation inside tubes: Part I–A two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops.
International Journal of Heat and Mass Transfer,
51(1-2), 111-124.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.002
Friedel, L. (1979). Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. European Two-Phase Group Meeting, Ispra, Italy.
Geiger, G. E. (1964). Sudden contraction losses in single and two-phase flow [Doctoral dissertation, University of Pittsburgh].
Kourakos, V., Rambaud, P., Chabane, S., Pierrat, D., & Buchlin, J. (2009). Two-phase flow modelling within expansion and contraction singularities.
Computational Methods in Multiphase Flow V,
63, 27.
https://doi.org/10.2495/MPF090031
Lin, S., Kwok, C., Li, R. Y., Chen, Z. H., & Chen, Z. Y. (1991). Local frictional pressure drop during vaporization of R-12 through capillary tubes.
International Journal of Multiphase Flow,
17(1), 95-102.
https://doi.org/10.1016/0301-9322(91)90072-B
Liu, C., Gao, Y. S., Dong, X. R., Wang, Y. Q., Liu, J. M., Zhang, Y. N., Cai, X. S., & Gui, N. (2019), Third generation of vortex identification methods: Omega and Liutex/Rortex based systems.
Journal of Hydrodynamics,
31, 205-223.
https://doi.org/10.1007/s42241-019-0022-4
Liu, C., Wang, Y., Yang, Y., & Duan, Z. (2016). New omega vortex identification method.
Science China Physics,
Mechanics & Astronomy,
59, 1-9.
https://doi.org/10.1007/s11433-016-0022-6
McAdams, W., Woods, W., & Heroman Jr, L. (1942). Vaporization inside horizontal tubes—II benzene-oil mixtures.
Transactions of the American Society of Mechanical Engineers,
64(3), 193-199.
https://doi.org/10.1115/1.4019013
Moreno Quiben, J. (2005). Experimental and analytical study of two-phase pressure drops during evaporation in horizontal tubes. EPFL.
Padilla, M., Revellin, R., & Bonjour, J. (2013). Two-phase flow of HFO-1234yf, R-134a and R-410A in sudden contractions: Visualization, pressure drop measurements and new prediction method.
Experimental Thermal and Fluid Science,
47, 186-205.
https://doi.org/10.1016/j.expthermflusci.2013.01.015
Patra, S. K., Roul, M. K., Satapathy, P. K., & Barik, A. K. (2021). Fluid dynamics and pressure drop prediction of two-phase flow through sudden contractions.
Journal of Fluids Engineering,
143(9), 091401.
https://doi.org/10.1115/1.4050962
Quibén, J. M., & Thome, J. R. (2007a). Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part II: New phenomenological model.
International Journal of Heat and Fluid Flow,
28(5), 1060-1072.
https://doi.org/10.1016/j.ijheatfluidflow.2007.01.004
Quibén, J. M., & Thome, J. R. (2007b). Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part I: Diabatic and adiabatic experimental study.
International Journal of Heat and Fluid Flow,
28(5), 1049-1059.
https://doi.org/10.1016/j.ijheatfluidflow.2007.01.003
Roul, M. K., & Dash, S. K. (2011). Two‐phase pressure drop caused by sudden flow area contraction/expansion in small circular pipes.
International Journal for Numerical Methods in Fluids,
66(11), 1420-1446.
https://doi.org/10.1002/fld.2322
Song, X., Ma, J., Li, Y., Sun, X., & Zhao, Y. (2023). Analysis of the flow phenomenon of fluid undergoing a sudden contraction to an annular gap.
Physics of Fluids,
35(9).
https://doi.org/10.1063/5.0169034
Taitel, Y., & Dukler, A. E. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas‐liquid flow.
AIChE Journal,
22(1), 47-55.
https://doi.org/10.1002/aic.690220105
Vallée, C., Höhne, T., Prasser, H.-M., & Sühnel, T. (2008). Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena.
Nuclear Engineering and Design,
238(3), 637-646.
https://doi.org/10.1016/j.nucengdes.2007.02.051
Zahedi, R., & Rad, A. B. (2022) Numerical and experimental simulation of gas-liquid two-phase flow in 90-degree elbow.
Alexandria Engineering Journal,
61(3):, 2536-2550.
https://doi.org/10.1016/j.aej.2021.07.011
Zeghloul, A., Azzi, A., Hasan, A., & Azzopardi, B. J. (2018). Behavior and pressure drop of an upwardly two-phase flow through multi-hole orifices.
Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science,
232(18), 3281-3299.
https://doi.org/10.1177/0954406217736081
Zeghloul, A., Azzi, A., Saidj, F., Messilem, A., & Azzopardi, B. J. (2017). Pressure drop through orifices for single-and two-phase vertically upward flow—implication for metering.
Journal of Fluids Engineering,
139(3), 031302.
https://doi.org/10.1115/1.4034758
Zeghloul, A., Bouyahiaoui, H., Azzi, A., Hasan, A. H., & Al-sarkhi, A. (2020). Experimental investigation of the vertical upward single-and two-phase flow pressure drops through gate and ball valves.
Journal of Fluids Engineering,
142(2), 021401.
https://doi.org/10.1115/1.4044833
Zhang, Y. N., Wang, X. Y., Zhang, Y. N., & Liu, C. (2019). Comparisons and analyses of vortex identification between Omega method and Q criterion.
Journal of Hydrodynamics,
31, 224-230.
https://doi.org/10.1007/s42241-019-0025-1