Application of Lobed Mixers to Reduce Drag of Boat-Tailed Ground Vehicles


Brunel University London, Uxbridge, UB8 3PH, United Kingdom


Minimising the aerodynamic drag of commercial vehicles is important economically and ecologically. This work demonstrates the effective use of lobed-mixing geometries, traditionally used to enhance flow mixing, as a viable, passive flow control method for reducing base pressure drag of boat-tailed ground vehicles. Experiments were performed on a 1/24th-scale Heavy Goods Vehicle representative model at a Reynolds number of 2.3 × 105 with force and hot-wire anemometry measurements used to quantify drag and wake characteristics. Tests on a baseline (no boat-tail), an unaltered boat-tail, and lobed-mixing configurations with varying pitch and height were compared. Overall, the baseline and unaltered boat-tail exhibited good correlation to previous results. This provided confidence in the methodology adopted. Results using lobed mixers showed up to a 10.2% drag reduction with the added vorticity produced acting to fundamentally shift the nature of the wake. This is manifested principally through the generation of counter-rotating vortical structures which enhance crosswise flow entrainment into the base wake. This action is observed to limit flow entrainment towards the ground leading to a higher wake and a characteristic ‘waist’. Enhanced mixing is also demonstrated. Overall, results suggest the suitability of lobed mixers as an effective means for drag reduction of boat-tailed ground vehicles.