Experimental Investigation of Aerodynamic Characteristics for Three Typical Micro Wind Turbines at Low Reynolds Number


1 College of Aeroengine, Shenyang Aerospace University, Shenyang, Liaoning Province, 110136, China

2 Shenyang Academy of Environmental Sciences, Shenyang, Liaoning Province, 110167, China

3 Key Laboratory of Fluid Mechanics, Ministry of Education, Beihang University, Beijing, 100083, China


Onsite utilization of wind energy in the urban environment is an effective solution to environmental protection and energy security. The typically micro wind turbines, including Savonius vertical axis wind turbine, H-type vertical axis wind turbine and micro horizontal axis wind turbine are more suitable for distributed generation, relative to centralized generation of large scale wind turbines. However, the wind in the urban environment characterized by low wind speed, high levels of turbulence and strongly unsteady direction and speed, directly affecting the aerodynamic characteristics of wind turbine. In the present work, wind tunnel tests have been conducted to investigate the low Reynolds number effect on aerodynamic characteristics for these three typical micro wind turbines, and the aerodynamic differences among them have been compared qualitatively and quantitatively. The experimental results show that micro horizontal axis wind turbine and H-type vertical axis wind turbine, belonging to lift-type wind turbine, have relatively higher startup wind speed and lower power coefficient due to deteriorative aerodynamic performance of airfoil at low wind speed. However, Savonius vertical axis wind turbine, as a drag-type wind turbine, exhibits excellent aerodynamic performance at low Reynolds number. The Savonius wind turbine has apparent output power at 5m/s, and the peak power coefficient exceeding 0.2 at 9m/s being superior to that of two other lift-type wind turbines at the same wind speed. In addition, in consideration of natural advantage of vertical axis wind turbine, Savonius wind turbine is the best option for applying at low Reynolds number urban environment.