Differential Equation for Turbulence Power Losses and Energy Spectra Based on Consolidated Empirical Results

Document Type : Regular Article


1 Hydro-Engineering Solutions (Hydro-LLC), Auburn, AL, 36830, U.S.A.

2 Department of Civil and Environmental Engineering, Auburn University, Auburn, AL, 36830, U.S.A



A second order differential equation for the energy dissipation rate of turbulence is presented. The derivation procedure is explained. The obtained governing equation is a Euler equation, which integration naturally conduces to power laws for the energy dissipation rate as a function of the wavenumber, a result that is extended to the energy spectrum of turbulence. Power laws are obtained for the cases of two equal and two different real roots. For the case of two conjugate complex roots, the solution is a sum of sine and cosine functions of the normal logarithm of the wavenumber. The differential equation accrues from a more basic equation obtained through thermodynamic-type steps that joint part of already consolidated empirical and semi-empirical information on turbulence existing in the literature, and is formally analogue to the Thermodynamics equation of thermal radiation. It is also shown that parameters of turbulence like length and velocity scales may be related to this formulation.


Alexakis, A. and L. Biferale (2018). Cascades and transitions in turbulent flows, Physics Reports (767-769), 1-101.##
Alexandrova, O., C. H. K. Chen, L. Sorriso-Valvo, T. S. Horbury and S. D. Bale (2013). Solar wind turbulence and the role of ion instabilities, Space Science Reviews 178, 101-139.##
Badillo, A and O. K. Matar (2017). On the missing link between pressure drop, viscous dissipation, and the turbulent energy spectrum, APS/123-QED.##
Bejan, A. (1982). Entropy Generation through Heat and Fluid Flow, John Wiley and Sons, USA.##
Bourouaine, S., O. Alexandrova, E. Marsch and M. Maksimovic (2012). On spectral breaks in the power spectra of magnetic fluctuations in fast solar wind between 0.3 and 0.9 au, The Astrophysical Journal, 749 (102), 7.##
Boyce, W. E. and R. C. Di Prima (2009). Elementary Differential Equations and Boundary Value Problems, 9th ed., John Willey and Sons, Inc., USA.##
Brannigan, L., D. P. Marshall, A. Naveira-Garabato and A. J. G. Nurser (2015). The seasonal cycle of Submesoscale flows, Ocean Modelling, 15.##
Brodkey, R. S. (1967), The Phenomena of Fluid Motions, Addison-Wesley Publishing Co, USA.##
Brodkey, R. S. and H. C. Hershey (1988). Transport Phenomena: A Unified Approach, McGraw-Hill Book Co.##
Bruno, R., D. Telloni, D. DeIure and E. Pietropaulo (2017). Solar wind magnetic field back-ground spectrum from fluid to kinetic scales, MNRAS, 472, 1052–1059.##
Calderbank, P. H. and M. B. Moo-Young (1961). The continuous phase heat and mass-transfer properties of dispersions, Chemical Engineering Science 16, 39-54.##
Cerbus, R. Y., C. C. Liu, G. Gioia and P. Chakraborty (2020). Small-scale universality in the spectral structure of transitional pipe flows, Science Advances, Jan 24; 6(4):eaaw6256.##
Chen, Y. (2019). Simulation and experimental investigation of power consumption, gas dispersion and mass transfer coefficient in a multi-phase stirred bioreactor, Brazilian Journal of Chemical Engineering, 36(4), 1439 - 1451.##
Cheng, X. L., B. L. Wang, F. Hu and R. Zhu (2010). Kolmogorov constants of atmospheric turbulence over a homogeneous surface, Atmospheric and Oceanic Science Letters, (3)4, 195-200.##
Chu, C. R. and G. H. Jirka (2003). Wind and Stream Flow Induced Reaeration, Journal of Environmental Engineering, ASCE 129(12), 1129-1136,##
Gamard, S. and W. K. George (1999). Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence, Flow, Turbulence and Combustion 63, 443–477.##
Goldstein, M. L., R. T. Wicks, S. Perri and F. Sahraoui (2015). Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook, Philosophical Transactions of the Royal Society A 373: 20140147.##
Hanjalić, K. (2006). Turbulence and transport phenomena: modelling and simulation, 150p. https://www.academia.edu/22152743/TURBULENCE_AND_TRANSPORT_PHENOMENA_Modelling_and_Simulation.##
Heisenberg, W. (1948). On the theory of statistical and isotropic turbulence, Proceedings of the Royal Society, 402-406.##
Hinze, J. O. (1959). Turbulence: An Introduction to its Mechanism and Theory, McGraw-Hill.##
Holland, F. A. and R. Bragg (1995). Fluid Flows for Chemical Engineers, 2nd ed., Arnold, a division of Hodder Headline PLC, London.##
Hoque, M. M., M. J. Sathe, S. Mitra, I. B. Joshi and G. M. Evans (2015). Comparison of specific energy dissipation rate calculation methodologies utilising 2D PIV velocity measurement, Chemical Engineering Science 137, 752–767.##
Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Proceedings of the USSR Academy of Sciences 30, 301–305.##
Lamont, J. C. and D. Scott (1970). An eddy cell model of mass transfer into the surface of a turbulent liquid, AIChE Journal 16(4), 513-519.##
Layton, W. (2018) Turbulence: numerical analysis, modelling and simulation, Special Issue, Fluids, MDPI, St. Alban-Anlage 66, Basel, Switzerland, http://www.mdpi.com/journal/fluids/special_issues/turbulence).##
Lien, R. C. and T. B. Sanford (2001). Turbulence spectra and local similarity scaling in a strongly stratified oceanic bottom boundary layer, Continental Shelf Research 24(3), 375-392. ##
McComb, W. D. and M. Q. May (2018). The effect of Kolmogorov (1962) scaling on the universality of turbulence energy spectra SUPA School of Physics and Astronomy, University of Edinburgh.##
Monin, A. S. and A. M. Yaglom (1979). Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 1, the MIT Press, 4th ed.##
Monin, A. S. and A. M. Yaglom (1981). Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 2, the MIT Press, 2th ed..##
Nature Physics (2016). Big whorls, little whorls, Nature Phys 12, 197, quoting Richardson, L. F. 1922, Weather Prediction by Numerical Pro-cess. Cambridge University Press.##
Neely, T. W., A. S. Bradley, E. C. Samson, S. J. Rooney, E. M. Wright, K. J. H. Law, R. Carretero-González, P. G. Kevrekidis, M. J. Davis and B. P. Anderson (2013). Characteristics of two-dimensional quantum turbulence in a compressible Superfluid, Physical Review Letters 111, 235301.##
Obukhov, A. M. (1941). On the distribution of energy in the spectrum of turbulent flow, Comptes Rendus of the Academy of Sciences of the U.R.S.S 32, 19.##
Onsager, K. (1945). The distribution of energy in turbulence. Physical Review, 68:281.##
Osada, J. (1972). Evolution of the ideas in physics, Edgard Blücher Ed., University of São Paulo Ed., (book in Portuguese), Brazil.##
Patankar, S. V. (1980). Numerical heat transfer and fluid flow, 1st ed., Series in Computational Methods in Mechanics and Thermal Sciences, CRC Press, Taylor and Francis Group, Boca Raton, FL.##
Pope, S. B. (2000). Turbulent Flows, Cambridge University Press, 1st ed., UK.##
Puga, A. J. (2016). Characteristics of the velocity power spectrum as a function of Taylor Reynolds number, PhD thesis for Mechanical and Aerospace Engineering presented at the University of California, Irvine.##
Rebollo, T. C. and R. Lewandowski (2014). Mathematical and numerical foundations of turbulence models and applications, Series in Modeling and Simulation in Science, Engineering and Technology, Birkhäuser.##
Rodi, W. (2000). Turbulence Models and Their Ap-plication in Hydraulics A State-of-the-Art Re-view, 3rd Ed., IAHR, International Association of Hydraulic Research, Monograph Series.##
Saddoughi, S. G. and S. V. Veeravalli (1994). Local iso-tropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333-372.##
Sassa, K. and H. Makita (2005) Reynolds number depen-dence of elementary vortices in turbulence, Pro-ceedings International Symposium on Engi-neering Turbulence Modelling and Measure-ments; ETMM6, Sardinia, Italy, 431-440.##
Schulz, H. E. (1991) Investigação do mecanismo de reoxigenação da água em escoamento e sua correlação com o nível de turbulência junto à superfície – Parte 2 (Investigation of the reoxy-genation mechanism of flowing water and its correlation with the turbulence level at the sur-face–2nd Part, in Portuguese) PhD Thesis, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil.##
Schulz, H. E. and M. F. Giorgetti (1991). Measurements of reaeration coefficient with the solids probe, In: Air-water Mass Transfer, S. C. Williams and J. S. Gulliver (eds), ASCE,278-293.##
Schulz, H. E. (2001). Alternatives in Turbulence, EESC, Printed by University of São Paulo (book in Portuguese, ISBN 8585205377), Brazil.##
Schmitt, F. G. (2017). Turbulence from 1870 to 1920: the birth of a noun and of a concept, C. R. Mecanique 345, 620–626.##
Selvi, N. and P. Sugumar (2018) Concepts of thermody-namics, International Journal of Pure and Ap-plied Mathematics 119 (12), 1675-1683.##
Slaughter, G. M. (1964). Investigation of the ener-gy spectrum of turbulence in a closed rectan-gular conduit, PhD Thesis, Georgia Institute of Technology, 190p.##
Stewart, S. M. and R. B. Johnson (2016). Blackbody Radiation: A History of Thermal Radiation Computational Aids and Numerical Meth-ods, 1st Ed., CRC Press, Boca Raton.##
Tung, K. K. (2003). The k-3 and k-5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic Two-Level Model Simulation, Journal of the Athmospherica Sciences 60, 824-835.##
Vassilicos, J. C. (2015). Dissipation in turbulent flows, Annu. Rev. Fluid Mech, first published online as a Review in Advance on August 25, 2014, 47, 95–114.
Verscharen, D., R. T. Wicks, O. Alexandrova, R. Bruno, D. Burgess, C. H. K. Chen, R. D’Amicis, J. D. Keyser, T. D. Wit, L. Franci, J. He, P. Henri, S. Kasahara, Y. Khotyaintsev, K. G. Klein, B. Lavraud, B. M. Maruca,;= M. Maksimovic, F. Plaschke, S. Poedts, C. S. Reynolds, O. Roberts, F. Sahraoui, S. Saito, C. S. Salem, J. Saur, S. Servidio, J. E. Stawarz, Š. Štverák and D. Told (2021). A Case for electron-astrophysics, Exp Astron, Voyage 2050-Science themes for ESA’s long-term plan for the science programme: Solar Systems, ours and others (Part2).##
Voitenko, Y. and J. De Keyser (2011). Turbulent spectra and spectral kinks in the transition range from MHD to kinetic Alfven turbulence, Nonlin. Processes Geophys 18, 587–597.##
Wang, G., F. Yang, K. Wu, Y. Ma, C. Peng, T. Liu, and L. P. Wang (2021). Estimation of the dissipa-tion rate of turbulent kinetic energy: a review, Chemical Engineering Science (229), 116133, 17p.##
White, F. M. (2016). Fluid Mechanics, University of Rhode Island, McGraw-Hill Education, NY, USA, 864p.##
Xia, H., N. Francois, H. Punzmann and M. Shats (2013). Lagrangian scale of particle dispersion in turbulence, Nature Communications, 4##