Numerical Investigation of the Influence of Microchannel Geometry on the Droplet Generation Process

Document Type : Regular Article


1 School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan – 44919, Republic of Korea

2 Carbon Value Co., Ltd, 2802 A-dong, 97, Centum Jungang-ro, Haeundae-gu, Busan – 48058, Republic of Korea

3 Department of Energy Engineering, Ulsan National Institute of Science and Technology, Ulsan – 44919, Republic of Korea



Two immiscible fluids flowing in microchannels are essential for microdevices to achieve efficient transfer of fluid reactions and heat, droplet mixing, extraction, and emulsification. In this study, a numerical investigation of the flow regime of droplet generation and the droplet breakup behavior of immiscible fluids (water and oil) in various microchannel structures was undertaken. To predict the influence of the microchannel structure on droplet generation and the breakup process, a two-phase level set method was implemented. The generated droplets were validated with experimental results of the T-shape microchannel structure. The obtained numerical results were in good agreement with the experimental results. Furthermore, the validated model was used to investigate the effect of various types of microchannel structures on droplet generation and breakup behavior. Also, the effects of different viscosities, wetted wall contact angles, surface tension, the size of continuous and dispersed channel widths, and the continuous flow rate for droplet generation and breakup in the microchannel were studied. This work contributes to better understanding of effective microchannel design.


Ba, Y., H. Liu, J. Sun and R. Zheng (2015). Three dimensional simulations of droplet formation in symmetric and asymmetric T-junctions using the color-gradient lattice Boltzmann model. International Journal of Heat and Mass Transfer 90, 931-947.##
Chen, D. L., C. J. Gerdts and R. F. Ismagilov (2005). Using Microfluidics to Observe the Effect of Mixing on Nucleation of Protein Crystals. Journal of the American Chemical Society 127(27), 9672-9673.##
Chen, H., Q. Fang, X. F. Yin and Z. L. Fang (2005). Microfluidic chip-based liquid–liquid extraction and preconcentration using a subnanoliter-droplet trapping technique [10.1039/B416964F]. Lab on a Chip 5(7), 719-725.##
Chen, Y. S., Y. L. Huang, C. H. Kuo and S. H. Chang, (2007). Investigation of design parameters for droplet generators driven by piezoelectric actuators. International Journal of Mechanical Sciences 49(6), 733-740.##
Cybulski, O., P. Garstecki and B. A. Grzybowski (2019). Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nature Physics 15(7), 706-713.##
Dittrich, P. S. and A. Manz (2006). Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery 5(3), 210-218.##
Gach, P. C., K. Iwai, P. W. Kim, N. J. Hillson and A. K. Singh (2017). Droplet microfluidics for synthetic biology [10.1039/C7LC00576H]. Lab on a Chip 17(20), 3388-3400.##
Garstecki, P., H. A. Stone and G. M. Whitesides (2005). Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Physical Review Letters 94(16), 164501.##
Han, W. and X. Chen (2021). A review on microdroplet generation in microfluidics. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43(5).##
Hatakeyama, T., D. L. Chen and R. F. Ismagilov (2006). Microgram-Scale Testing of Reaction Conditions in Solution Using Nanoliter Plugs in Microfluidics with Detection by MALDI-MS. Journal of the American Chemical Society 128(8), 2518-2519.##
Hong, Y. and F. Wang (2007). Flow rate effect on droplet control in a co-flowing microfluidic device. Microfluidics and Nanofluidics 3(3), 341-346.
Joanicot, M. and A. Ajdari (2005). Droplet Control for Microfluidics. Science 309 (5736), 887.##
Jung, J. H., G. Destgeer, B. Ha, J. Park and H. J. Sung (2016). On-demand droplet splitting using surface acoustic waves [10.1039/C6LC00648E]. Lab on a Chip 16(17), 3235-3243.##
Kim, L. S., H. K. Jeong, M. Y. Ha and K. C. Kim (2008). Numerical simulation of droplet formation in a micro-channel using the lattice Boltzmann method. Journal of Mechanical Science and Technology 22(4), 770-779.##
Liu, H. and Y. Zhang (2009). Droplet formation in a T-shaped microfluidic junction. Journal of Applied Physics 106(3), 034906.##
Luo, J., S. Y. Wu, L. Xiao and Z. L. Chen (2021). Parametric influencing mechanism and control of contact time for droplets impacting on the solid surfaces. International Journal of Mechanical Sciences 197, 106333.##
Madadelahi, M., M. J. Madou, Y. D. Nokoorani, A. Shamloo and S. O. Martinez-Chapa (2020). Fluidic barriers in droplet-based centrifugal microfluidics: Generation of multiple emulsions and microspheres. Sensors and Actuators B: Chemical 311, 127833.##
Mastiani, M., B. Mosavati and M. Kim (2017). Numerical simulation of high inertial liquid-in-gas droplet in a T-junction microchannel. RSC Advances 7(77), 48512-48525.##
Ngo, I. L., T. D. Dang, C. Byon and S. W. Joo (2015). A numerical study on the dynamics of droplet formation in a microfluidic double T-junction. Biomicrofluidics 9(2), 024107.##
Nie, Z., S. Xu, M. Seo, P. C. Lewis and E. Kumacheva (2005). Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors. Journal of the American Chemical Society 127(22), 8058-8063.##
Olsson, E. and G. Kreiss (2005). A conservative level set method for two phase flow. Journal of Computational Physics 210(1), 225-246.##
Osher, S. and R. Fedkiw (1991). Level Set Methods and Dynamic Implicit Surfaces. Springer, New York, NY.##
Osher, S. and J. A. Sethian (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12-49.##
Raj, R., N. Mathur and V. V. Buwa (2010). Numerical Simulations of Liquid−Liquid Flows in Microchannels. Industrial & Engineering Chemistry Research 49(21), 10606-10614.##
Rambach, R. W. K., Linder, M. Heymann and T. Franke (2017). Droplet trapping and fast acoustic release in a multi-height device with steady-state flow [10.1039/C7LC00378A]. Lab on a Chip 17(20), 3422-3430.##
Sartipzadeh, O., S. M. Naghib, A. Seyfoori, M. Rahmanian and F. S. Fateminia (2020). Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size. Materials Science and Engineering: C 109, 110606.##
Shang, L., Y. Cheng and Y. Zhao (2017). Emerging Droplet Microfluidics. Chemical Reviews 117(12), 7964-8040.##
Shestopalov, I., J. D. Tice and R. F. Ismagilov (2004). Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system [10.1039/B403378G]. Lab on a Chip 4(4), 316-321.##
Shi, Y., G. H. Tang and H. H. Xia (2014). Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices. Computers & Fluids 90, 155-163.##
Shum, H. C., A. Bandyopadhyay, S. Bose and D. A. Weitz (2009). Double Emulsion Droplets as Microreactors for Synthesis of Mesoporous Hydroxyapatite. Chemistry of Materials 21(22), 5548-5555.##
Song, H., J. D. Tice and R. F. Ismagilov (2003). A Microfluidic System for Controlling Reaction Networks in Time Angewandte Chemie International Edition 42(7), 768-772.##
Srikanth, S., S. K. Dubey, A. Javed and S. Goel (2021). Droplet Based Microfluidics Integrated with Machine Learning. Sensors and Actuators A: Physical, 113096.##
Tarchichi, N., F. Chollet and J. F. Manceau (2013). New regime of droplet generation in a T-shape microfluidic junction. Microfluidics and Nanofluidics 14(1), 45-51.##
Thorsen, T., R. W. Roberts, F. H. Arnold, F. H. and S. R. Quake (2001). Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters 86(18), 4163-4166.##
Um, E., M. Kim, H. Kim, J. H. Kang, H. A. Stone and J. Jeong (2020). Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators. Nature Communications 11(1), 5221.##
Utada, A. S., A. Fernandez-Nieves, H. A. Stone and D. A. Weitz (2007). Dripping to jetting transitions in coflowing liquid streams. Physical Review Letters 99(9), 094502.##
van der Graaf, S., T. Nisisako, C. G. P. H.Schroën, R. G. M. van der Sman and R. M. Boom (2006). Lattice Boltzmann Simulations of Droplet Formation in a T-Shaped Microchannel. Langmuir 22(9), 4144-4152.##
Venkateshwarlu, A. and R. P. Bharti (2021). Effects of capillary number and flow rates on the hydrodynamics of droplet generation in two-phase cross-flow microfluidic systems. Journal of the Taiwan Institute of Chemical Engineers 139, 64-79##
Yang, C. G., Z. R. Xu and J. H. Wang (2010). Manipulation of droplets in microfluidic systems. TrAC Trends in Analytical Chemistry 29(2), 141-157.##
Yang, Q., D. Ju, Y. Liu, X. Lv, Z. Xiao, B. Gao, F. Song and F. Xu (2021). Design of organ-on-a-chip to improve cell capture efficiency. International Journal of Mechanical Sciences 209, 106705.##
Yen, B. K. H., A. Günther, M. A. Schmidt, K. F. Jensen and M. G. Bawendi (2005). A Microfabricated Gas–Liquid Segmented Flow Reactor for High-Temperature Synthesis: The Case of CdSe Quantum Dots Angewandte Chemie International Edition 44(34), 5447-5451.##
Zeng, W., Z. Tong, X. Shan, H. Fu and T. Yang (2021). Monodisperse droplet formation for both low and high capillary numbers in a T-junction microdroplet generator. Chemical Engineering Science 243, 116799.##
Zhang, J., W. Xu, F. Xu, W. Lu, L. Hu, J. Zhou, C. Zhang and Z. Jiang (2021). Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing. Journal of Food Engineering, 290, 110212.##
Zhang, K., Q. Liang, S. Ma, X. Mu, P. Hu, Y. Wang and G. Luo (2009). On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force [10.1039/B906229G]. Lab on a Chip 9(20), 2992-2999.##
Zhang, Z., J. Zhao, X. Ling and J. Ma (2021). Numerical study on dynamic behaviours of a micro-droplet impacting on a vertical wall in PEMFC. International Journal of Hydrogen Energy 46(35), 18557-18570.##
Zhu, P., T. Kong, Z. Kang, X. Tian and L. Wang (2015). Tip-multi-breaking in Capillary Microfluidic Devices. Scientific Reports5, 11102.##
Zhu, P. and L. Wang (2017). Passive and active droplet generation with microfluidics: a review [10.1039/C6LC01018K]. Lab on a Chip, 17(1), 34-75.##