Effect of Contact Angle Hysteresis on Evaporation Dynamics of a Sessile Drop on a Heated Surface

Document Type : Regular Article

Authors

1 Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, China

2 Patent Examination Cooperation (Tianjin) Center of the Patent Office, CNIPA, Tianjin 300304, China

10.47176/jafm.15.05.1069

Abstract

Contact angle hysteresis (CAH) is a significant factor affecting the drop motion on solid substrates. A model of CAH is introduced to explore the influence of CAH on the dynamics of a sessile drop on a uniformly heated surface, and a two-dimensional evolution equation of the drop thickness is established using the lubrication approximation and Navier slip boundary conditions. A numerical simulation is performed to examine the dynamic behaviors of an evaporating drop, and the drop profile, contact angle, contact line, and moving speed are investigated. Simulated results indicate that the drop evolution process involves drop spreading, pinning, and depinning of the contact line. In the drop spreading stage, when the hysteresis angle increases, the spreading period is shortened, and the spreading radius and spreading speed are reduced; in contrast, the pinning period is raised, and the mass of the drop is apparently reduced with increasing hysteresis angle. In the depinning stage, the CAH declines the contact angle, and a flatter pattern is evolved, thereby improving the heat transfer performance, promoting drop evaporation, and shortening the depinning time. The presence of CAH can speed up the drying of the drop, and the large hysteresis angle leads to faster evaporation. Regulating the CAH is an effective way to manipulate the motion of the contact line for an evaporating drop.

Keywords


Ajaev, V. S. (2005). Spreading of thin volatile liquid droplets on uniformly heated surfaces, Journal of Fluid Mechanics 528, 279-96.##
Anderson, D. M. and S. H. Davis (1995). The spreading of volatile liquid droplets on heated surfaces, Physics of Fluids 7, 248-65.##
Bonn, D., J. Eggers, J. Indekeu, J. Meunier and E. Rolley (2009). Wetting and spreading, Reviews of modern physics 81, 739.##
Bormashenko, E., A. Musin and M. Zinigrad (2011). Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line, Colloids and Surfaces A: Physicochemical and Engineering Aspects 385, 235-40.##
Brutin, D. and B. Sobac (2015). Triple Line Motion and Evaporation. in, Droplet Wetting and Evaporation (Elsevier).##
Chu, F. Q., X. M. Wu, Y. Zhu and Z. P. Yuan (2017). Relationship between condensed droplet coalescence and surface wettability, International Journal of Heat Mass Transfer 111, 836-41.##
Craster, R. V., O. K. Matar and K. Sefiane (2000). Surfactant transport on mucus films, Journal of Fluid Mechanics 425, 235-58.##
Craster, R. V., O. K. Matar and Khellil Sefiane (2009). Pinning, retraction, and terracing of evaporating droplets containing nanoparticles, Langmuir 25, 3601-09.##
Dettre, R. H. and R. E. Johnson (1965). Contact angle hysteresis. IV. Contact angle measurements on heterogeneous surfaces, The Journal of Physical Chemistry 69, 1507-15.##
Diddens, C., J. G. M. Kuerten, C. W. M. Van der Geld and H. M. A. Wijshoff (2017). Modeling the evaporation of sessile multi-component droplets, Journal of Colloid and Interface Science 487, 426-36.##
Ding, H. and P. D. M. Spelt (2007). Wetting condition in diffuse interface simulations of contact line motion, Physical Review E 75, 046708.##
Dugas, V., J. Broutin and E. Souteyrand (2005). Droplet evaporation study applied to DNA chip manufacturing, Langmuir 21, 9130-36.##
Eral, H. B. and J. M. Oh (2013). Contact angle hysteresis: a review of fundamentals and applications, Colloid Polymer Science, 291: 247-60.##
Gatapova, E., A. Ya., A. Semenov, D. V. Zaitsev and O. A. Kabov (2014). Evaporation of a sessile water drop on a heated surface with controlled wettability, Colloids Surfaces A: Physicochemical Engineering Aspects 441, 776-85.##
Hoffman, R. L. (1974). A study of the advancing interface. I. Interface shape in liquid—gas systems, Journal of Colloid and Interface Science 50, 228-41.##
Hu, D. H. and H. Y. Wu (2016). Volume evolution of small sessile droplets evaporating in stick-slip mode, Physical Review E 93, 042805.##
Jiang, T. S., O. H. Soo-Gun and J. C. Slattery (1979). Correlation for dynamic contact angle, Journal of Colloid and Interface Science 69, 74-77.##
Johnson, R. E. and R. H. Dettre (1964). Contact angle hysteresis. III. Study of an idealized heterogeneous surface, The Journal of Physical Chemistry 68, 1744-50.##
Kandlikar, S. G. (2012). History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review, Journal of Heat Transfer 134.##
Karapetsas, G. , R. V. Craster and O. K. Matar (2011). Surfactant-driven dynamics of liquid lenses, Physics of Fluids 23, 122106.##
Karapetsas, G. , K. C. Sahu and O. K. Matar (2016). Evaporation of sessile droplets laden with particles and insoluble surfactants, Langmuir 32, 6871-81.##
Karapetsas, G., K. C. Sahu and O. K. Matar (2013). Effect of contact line dynamics on the thermocapillary motion of a droplet on an inclined plate, Langmuir 29, 8892-906.##
Kavehpour, P., B. Ovryn and G. H. McKinley (2002). Evaporatively-driven Marangoni instabilities of volatile liquid films spreading on thermally conductive substrates, Colloids Surfaces A: Physicochemical Engineering Aspects 206, 409-23.##
Kiper, I., R. Fulcrand, C. Pirat, G. Simon, B. Stutz and S. M. M. Ramos (2015). Sessile drop evaporation on (super)hydrophobic surfaces: Effect of low pressure on the contact line dynamics, Colloids and Surfaces A: Physicochemical and Engineering Aspects 482, 617-23.##
Kulinich, S. A. and M. Farzaneh (2009). Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces, Applied Surface Science 255, 4056-60.##
Kuznetsov, G. V., D. V. Feoktistov, E. G. Orlova and K. A. Batishcheva (2016). Regimes of water droplet evaporation on copper substrates, Colloid Journal 78, 335-39.##
Lee, K. S., N. Ivanova, V. M. Starov, N. Hilal and V. Dutschk (2008). Kinetics of wetting and spreading by aqueous surfactant solutions, Advances in Colloid and Interface Science 144, 54-65.##
Li, Y. F., Y. J. Sheng and H. K. Tsao (2013). Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis, Langmuir 29, 7802-11.##
Lin, T. S., Y. H. Zeng, R. Y. Tsay and S. Y. Lin (2016). Roughness-induced strong pinning for drops evaporating from polymeric surfaces, Journal of the Taiwan Institute of Chemical Engineers 62, 54-59.##
Lopes, M. C. and E. Bonaccurso (2012). Evaporation control of sessile water drops by soft viscoelastic surfaces, Soft Matter 8, 7875-81.##
Matar, O. K. and R. V. Craster (2009). Dynamics and stability of thin liquid films, Reviews of modern physics 81, 1131.##
Nagy, M. and J. Škvarla (2013). Determination of contact angle hysteresis of water microdroplets evaporating on hydrolyzed PET foils, Acta Montanistica Slovaca 18, 125-28.##
Neumann, A. W. and R. J. Good (1972). Thermodynamics of contact angles. I. Heterogeneous solid surfaces, Journal of Colloid and Interface Science 38 341-58.##
Orlova, E. G., D. V. Feoktistov, G. V. Kuznetsov and K. O. Ponomarev (2018). Spreading of a distilled water droplet over polished and laser-treated aluminum surfaces, European Journal of Mechanics-B/Fluids 68, 118-27.##
Oron, A., S. H. Davis and S. G. Bankoff (1997). Long-scale evolution of thin liquid films, Reviews of Modern Physics 69, 931.##
Pan, Z. H., J. A. Weibel and S. V. Garimella (2020). Transport mechanisms during water droplet evaporation on heated substrates of different wettability, International Journal of Heat Mass Transfer 152, 119524.##
Pasandideh-Fard, M., S. D. Aziz and S. Chandra (2001). Cooling effectiveness of a water drop impinging on a hot surface, International Journal of Heat and Fluid Flow 22, 201-10.##
Pham, T. and S. Kumar (2019). Imbibition and evaporation of droplets of colloidal suspensions on permeable substrates, Physical Review Fluids 4, 034004.##
Picknett, R. G. and R. Bexon (1977). The evaporation of sessile or pendant drops in still air, Journal of Colloid and Interface Science 61, 336-50.##
Pournaderi, P. and M. Emdadi (2019). Study of droplet impact on a wall using a sharp interface method and different contact line models, Journal of Applied Fluid Mechanics 12, 1001-12.##
Putnam, S. A., A. M. Briones, L. W. Byrd and J. S. Ervin (2012). Microdroplet evaporation on superheated surfaces, International Journal of Heat Mass Transfer 55, 5793-807.##
Saada, M. A., S. Chikh and L. Tadrist (2010). Numerical investigation of heat and mass transfer of an evaporating sessile drop on a horizontal surface, Physics of Fluids 22, 13.##
Schulze, R. D., W. Possart and H. Kamusewitz (1989). Young's equilibrium contact angle on rough solid surfaces. Part I. An empirical determination, Journal of Adhesion Science Technology 3, 39-48.##
Sefiane, K., S. K. Wilson, S. David, G. J. Dunn and B. R. Duffy (2009). On the effect of the atmosphere on the evaporation of sessile droplets of water, Physics of Fluids 21, 9.##
Semenov, S., V. M. Starov, R. G. Rubio, H. Agogo and M. G. Velarde (2012). Evaporation of Sessile Water Droplets in Presence of Contact Angle Hysteresis, Mathematical Modelling of Natural Phenomena 7, 82-98.##
Smith, M. K. (1995). Thermocapillary migration of a two-dimensional liquid droplet on a solid surface, Journal of Fluid Mechanics 294, 209-30.##
Trybala, A., A. Okoye, S. Semenov, H. Agogo, R. G. Rubio, F. Ortega and V. M. Starov (2013). Evaporation kinetics of sessile droplets of aqueous suspensions of inorganic nanoparticles, Journal of Colloid and Interface Science 403, 49-57.##
Wang, X. D., X. F. Peng, J. F. Lu and B. X. Wang (2003). Measuring Technique of Contact Angle and Contact Angle Hysteresis on Rough Solid Surfaces Ⅱ: Contact Angle Hysteresis on Rough Stainless Steel, Journal of basic science and engineering(in Chinese), 296-303.##
Wijshoff, H. (2010). The dynamics of the piezo inkjet printhead operation, Physics Reports 491, 77-177.##
Xu, X. M. and X. P. Wang (2020). Theoretical analysis for dynamic contact angle hysteresis on chemically patterned surfaces, Physics of Fluids 32, 10.##
Ye, X. M., X. S. Zhang, M. L. Li and C. X. Li (2018). Dynamics of self-rewetting drop on an inclined uniformly heated substrate, Physics of Fluids 30, 112103.##
Ye, X. M., X. S. Zhang, M. L. Li, C. X. Li and S. Dong (2019). Contact line dynamics of two-dimensional evaporating drops on heated surfaces with temperature-dependent wettabilities, International Journal of Heat Mass Transfer 128, 1263-79.##
Yin, L. F., A. Chauhan, A. Recinella, L. Jia and S. G. Kandlikar (2020). Subcooled flow boiling in an expanding microgap with a hybrid microstructured surface, International Journal of Heat Mass Transfer 151, 119379.##
Yu, H. Z., Di. M. Soolaman, A. W. Rowe and J. T. Banks (2004). Evaporation of Water Microdroplets on Self‐Assembled Monolayers: From Pinning to Shrinking, ChemPhysChem 5, 1035-38.##
Zhang, C. Y., H. Zhang, X. S. Zhang, C. Yang and P. Cheng (2021). Evaporation of a sessile droplet on flat surfaces: An axisymmetric lattice Boltzmann model with consideration of contact angle hysteresis, International Journal of Heat and Mass Transfer 178, 121577.##