A Comparative Study of Two Numerical Methods Applied for 3D Liquid-Liquid Taylor Flow in a Microchannel

Document Type : Regular Article


1 University of Science and Technology Houari Boumediene (USTHB), P56J+GMH, Bab Ezzouar 16111, Algiers, Algeria

2 Polytechnic University of Hauts-de-France (UPHF), Campus Mont Houy 59313, Valenciennes, France



The laminar nature of flow in mini and microchannels has pushed researchers to develop novel solutions to overcome reaction rate reduction and heat/mass transfer issues. In this regard, Taylor flow is one of the possible solutions that could be used to enhance mixing inside mini and microchannels with reasonable pressure drop. The hydrodynamics of Taylor liquid-liquid flow is numerically studied in this work by employing two different droplet generation methods, specifically T-junction and patching methods. To this end, a three-dimensional model of rectangular microchannel flow is considered. The computational domain was designed and meshed by ICEM CFD and then simulated with commercial software ANSYS Fluent. The interface between the two phases was captured using the Volume of Fluid (VOF) method. The generating and development process of water droplets dispersed in an ethylene/propylene glycol carrier phase for both methods is discussed in detail. According to the results, both methods show satisfactory performance regarding liquid film and droplet shape, with only a slight difference. However, the patching method was found to be more economical in terms of computational time. This study would improve the state of knowledge on two-phase flow simulation in microchannels and thus contribute to the understanding of Taylor flow hydrodynamics.


Main Subjects

Abadie, T., Xuereb, C., Legendre, D., & Aubin, J. (2013). Mixing and recirculation characteristics of gas-liquid Taylor flow in microreactors. Chemical Engineering Research and Design, 91(11), 2225–2234. https://doi.org/10.1016/j.cherd.2013.03.003
Abdollahi, A., Norris, S. E., & Sharma, R. N. (2020). International journal of heat and mass transfer pressure drop and film thickness of liquid-liquid taylor flow in square microchannels. International Journal of Heat and Mass Transfer, 156, 119802. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119802
Bordbar, A., Kamali, R., & Taassob, A. (2018). Thermal Performance Analysis of Slug Flow in Square Microchannels. Heat Transfer Engineering, 41(1), 84-100. https://doi.org/10.1080/01457632.2018.1513630
Asadolahi, A. N., Gupta, R., Fletcher, D. F., & Haynes, B. S. (2011). CFD approaches for the simulation of hydrodynamics and heat transfer in Taylor flow. Chemical Engineering Science, 66(22), 5575–5584. https://doi.org/10.1016/j.ces.2011.07.047
Azarmanesh, M., & Farhadi, M. (2016). The effect of weak-inertia on droplet formation phenomena in T-junction microchannel. Meccanica, 51(4), 819–834. https://doi.org/10.1007/s11012-015-0245-6
Ba, Y., Liu, H., Sun, J., & Zheng, R. (2015). Three dimensional simulations of droplet formation in symmetric and asymmetric T-junctions using the color-gradient lattice Boltzmann model. International Journal of Heat and Mass Transfer, 90, 931–947. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.023
Bayareh, M., Nasr Esfahany, M., Afshar, N., & Bastegani, M. (2020). Numerical study of slug flow heat transfer in microchannels. International Journal of Thermal Sciences, 147(September 2019), 106118. https://doi.org/10.1016/j.ijthermalsci.2019.106118
Chakraborty, I., Ricouvier, J., Yazhgur, P., Tabeling, P., & Leshansky, A. M. (2019). Droplet generation at Hele-Shaw microfluidic T-junction. Physics of Fluids, 31(2). https://doi.org/10.1063/1.5086808
De menech, M., Garstecki, P., Jousse, F., & Stone, H. A. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 595, 141–161. https://doi.org/10.1017/S002211200700910X
Dessimoz, A. L., Cavin, L., Renken, A., & Kiwi-Minsker, L. (2008). Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chemical Engineering Science, 63(16), 4035–4044. https://doi.org/10.1016/j.ces.2008.05.005
Dombrowski, N., Foumeny, E. A., Ookawara, S., & Riza, A. (1993). The influence of reynolds number on the entry length and pressure drop for laminar pipe flow. The Canadian Journal of Chemical Engineering, 71(3), 472–476. https://doi.org/10.1002/cjce.5450710320
Garstecki, P., Fuerstman, M. J., Stone, H. A., & Whitesides, G. M. (2006). Formation of droplets and bubbles in a microfluidic T-junction - Scaling and mechanism of break-up. Lab on a Chip, 6(3), 437–446. https://doi.org/10.1039/b510841a
Gupta, R., Fletcher, D. F., & Haynes, B. S. (2009). On the CFD modelling of Taylor flow in microchannels. Chemical Engineering Science, 64(12), 2941–2950. https://doi.org/10.1016/j.ces.2009.03.018
Kashid, M. N., & Renken, A. (2010). Chemical engineering research and design CFD modelling of liquid – liquid multiphase microstructured reactor : Slug flow generation. Chemical Engineering Research and Design, 88(3), 362–368. https://doi.org/10.1016/j.cherd.2009.11.017
Kreutzer, M. T., Kapteijn, F., Moulijn, J. A., & Heiszwolf, J. J. (2005). Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels. Chemical Engineering Science, 60(22), 5895–5916. https://doi.org/10.1016/j.ces.2005.03.022
Li, X. B., Li, F. C., Yang, J. C., Kinoshita, H., Oishi, M., & Oshima, M. (2012). Study on the mechanism of droplet formation in T-junction microchannel. Chemical Engineering Science, 69(1), 340-351. https://doi.org/10.1016/j.ces.2011.10.048
Ma, H., Zhao, Q., Yao, C., Zhao, Y., & Chen, G. (2021). Effect of fluid viscosities on the liquid-liquid slug flow and pressure drop in a rectangular microreactor. Chemical Engineering Science, 241, 116697. https://doi.org/10.1016/j.ces.2021.116697
Eain, M. M. G., Egan, V., & Punch, J. (2013). Film thickness measurements in liquid-liquid slug flow regimes. International Journal of Heat and Fluid Flow, 44, 515–523. https://doi.org/10.1016/j.ijheatfluidflow.2013.08.009
Eain, M. M. G., Egan, V., & Punch, J. (2015). Local Nusselt number enhancements in liquid-liquid Taylor flows. International Journal of Heat and Mass Transfer, 80, 85–97. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.009
Mehdizadeh, A., Sherif, S. A., & Lear, W. E. (2011). International journal of heat and mass transfer numerical simulation of thermofluid characteristics of two-phase slug flow in microchannels. International Journal of Heat and Mass Transfer, 54(15–16), 3457–3465. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.040
Navaneetha Krishnan, R., Vivek, S., Chatterjee, D., & Das, S. K. (2010). Performance of numerical schemes in the simulation of two-phase free flows and wall bounded mini channel flows. Chemical Engineering Science, 65(18), 5117–5136. https://doi.org/10.1016/j.ces.2010.06.016
Nekouei, M., & Vanapalli, S. A. (2017). Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size. Physics of Fluids, 29(3). https://doi.org/10.1063/1.4978801
Qian, J., Li, X., Wu, Z., Jin, Z., Zhang, J., & Sunden, B. (2019). Slug formation analysis of liquid–liquid two-phase flow in t-junction microchannels. Journal of Thermal Science and Engineering Applications, 11(5), 1–40. https://doi.org/10.1115/1.4043385
Qin, N., Feng, Y., Wen, J. Z., & Ren, C. L. (2018). Numerical study on single flowing liquid and supercritical CO2 drop in microchannel: Thin film, flow fields, and interfacial profile. Inventions, 3(2). https://doi.org/10.3390/inventions3020035
Said, M., Nait Bouda, N., & Harmand, S. (2023). Numerical investigation of flow patterns and plug hydrodynamics in a 3D T-junction microchannel. Microgravity Science and Technology, 35(1), 8. https://doi.org/10.1007/s12217-022-10026-9
Silva, M. C. F., Campos, J. B. L. M., Miranda, J. M., & Araújo, J. D. P. (2020). Numerical study of single taylor bubble movement through a microchannel using different CFD packages. Processes, 8(11), 1–19. https://doi.org/10.3390/pr8111418
Talimi, V., Muzychka, Y. S., & Kocabiyik, S. (2012). International journal of multiphase flow a review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels. International Journal of Multiphase Flow, 39, 88–104. https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.005
Thorsen, T., Roberts, R. W., Arnold, F. H., & Quake, S. R. (2001). Dynamic pattern formation in a vesicle-generating microfluidic device. 4163–4166. https://doi.org/10.1103/PhysRevLett.86.4163
Tice, J. D., Lyon, A. D., & Ismagilov, R. F. (2004). Effects of viscosity on droplet formation and mixing in microfluidic channels. Analytica Chimica Acta, 507(1), 73–77. https://doi.org/10.1016/j.aca.2003.11.024
Van Steijn, V., Kreutzer, M. T., & Kleijn, C. R. (2007). μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chemical Engineering Science, 62(24), 7505–7514. https://doi.org/10.1016/j.ces.2007.08.068
Wang, C., Tian, M., Zhang, J., & Zhang, G. (2021). Experimental study on liquid–liquid two-phase flow patterns and plug hydrodynamics in a small channel. Experimental Thermal and Fluid Science, 129(June), 110455. https://doi.org/10.1016/j.expthermflusci.2021.110455
Wong, V. L., Loizou, K., Lau, P. L., Graham, R. S., & Hewakandamby, B. N. (2017). Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-SET method. Chemical Engineering Science, 174, 157–173. https://doi.org/10.1016/j.ces.2017.08.027
Yan, Y., Guo, D., & Wen, S. Z. (2012). Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction. Chemical Engineering Science, 84, 591–601. https://doi.org/10.1016/j.ces.2012.08.055
Yao, C., Zheng, J., Zhao, Y., Zhang, Q., & Chen, G. (2019). Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel. Chemical Engineering Journal, 373(May), 437–445. https://doi.org/10.1016/j.cej.2019.05.051
Zhou, C. H., & Ai, J. Q. (2013). Mesh adaptation for simulation of unsteady flow with moving immersed boundaries. International Journal for Numerical Methods in Fluids 72(4) 453–477. https://doi.org/10.1002/fld.3751