Hydrodynamic Performance of Cycloidal Propellers with Four-Bar and Mixed Four-bar/Five-bar Mechanisms: A Numerical Study

Document Type : Regular Article


School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China



Cycloidal propellers constitute a specialized category of underwater propulsion devices, widely employed in vehicles requiring exceptional maneuverability. The parameters of the blade-driving mechanism directly impact the propeller performance. Hence, the effect of variations in the geometric parameters of the blade-driving mechanism on the hydrodynamic performance of cycloidal propellers must be investigated. In this study, a specific set of four-bar and mixed four-bar/five-bar mechanisms are taken as examples, and the effect of linkage-length variations on the hydrodynamic performance of cycloidal propellers was analyzed using numerical simulation methods. First, we established a physical model of the cycloidal propeller, and then derived the relationship between blade-rotation and revolution angles. Subsequently, by solving the Navier–Stokes equations and employing computational fluid dynamics simulations based on viscosity, an analysis is conducted to reveal the trends in the impact of different linkage-length combinations on the hydrodynamic performance of the cycloidal propeller. Finally, the outcomes of the numerical simulations are interpreted using the wing element theory. In similar blade-driving mechanisms, the effects of varying linkage lengths on propeller hydrodynamic performance are determined through alterations in the blade rotation angle range and equilibrium position. An increase in the range of the blade-rotation angle significantly enhances the hydrodynamic performance of the cycloidal propeller. This research employs a more realistic auto-propulsion mode for numerical simulations, establishing a mapping relationship between the blade-driving mechanism and hydrodynamic performance of the cycloidal propeller, while analyzing the underlying influencing mechanisms. Furthermore, crucial numerical simulations and theoretical foundations are employed for designing the four-bar and mixed four-bar/five-bar mechanism cycloidal propellers. The findings of this study could also be used in similar cycloidal propellers with multilinkage mechanism. 


Main Subjects

Amin, S., Mohammad, A. B., Hafiz, M. A. (2023). Comprehensive evaluation of the entropy generation in oval twisted double-pipe heat exchanger using non-Newtonian nanofluid using two-phase mixture model. Engineering Analysis with Boundary Elements, 152, 637-644. https://doi.org/10.1016/j.enganabound.2023.04.021.
Andrisani, A., Angeli, D., Dumas, & Antonio. (2016). Optimal pitching schedules for a cycloidal rotor in hovering. Aircraft Engineering & Aerospace Technology. 88(5), 623–635. https://doi.org/10.1108/AEAT-02-2015-0066.
Bakhtiari, M., & Ghassemi, H. (2019). A 2.5D numerical study on open water hydrodynamic performance of a Voith-Schneider propeller. Mechanics & Industry, 20(6) 617. https://doi.org/10.1051/meca/2019049
Bakhtiari, M., & Ghassemi, H. (2020). CFD data based neural network functions for predicting hydrodynamic performance of a low-pitch marine cycloidal propeller. Applied Ocean Research, 94, 101981. https://doi.org/10.1016/j.apor.2019.101981
Bertram, V. (2012). Practical ship hydrodynamics (Second Edition). Elsevier.      https://doi.org/10.1016/C2010-0-68326-X
Brockett, T. (1991, 17-18 September). Hydrodynamic analysis of cycloidal propulsors [Conference session]. Propellers/Shafting 91 Symposium, Virginia Beach, VA, United States.
Desai, M., Gokhale, R., Halder, A., Benedict, M., & Young, Y. L. (2020). Augmenting Maneuverability of UUVs with Cycloidal Propellers. Preprints. https://doi.org/10.20944/preprints202005.0434.v1
Hafiz, M. (2023). Thermal management systems for batteries in electric vehicles: A recent review. Energy Reports, 9, 5545-5564. https://doi.org/10.1016/j.egyr.2023.04.359.
Hu, J., Yan, Q., Ding, J., & Sun, S., (2022), Numerical study on transient four-quadrant hydrodynamic performance of cycloidal propellers. Engineering Applications of Computational Fluid Mechanics, 16(1), 1813-1832. https://doi.org/10.1080/19942060.2022.2118171
Hu, Y., Fu, X., Zhang, H. L., Wang, G. Q. & Farhat, H. (2019). Effects of blade aspect ratio and taper ratio on hovering performance of cycloidal rotor with large blade pitching amplitude. Chinese Journal of Aeronautics. 32(5), 1121-1135. https://doi.org/10.1016/j.cja.2019.01.015
Isay, W. H. (1968). Zur Theorie des Voith-Schneider-Propellers. Ingenieur-Archiv, 37, 125–140. https://doi.org/10.1007/BF00532712
Jakson, A. L. M., & José, P. (2018). Effects of harmonic vibration on cycloidal rotor performance, [Conference session]. ASME 2018 International Mechanical Engineering Congress and Exposition 2018, Pittsburgh, USA. https://doi.org/10.1115/IMECE2018-87103
Ju, Y., Babaei-Mahani, R., Ibrahem, R. K., Khakberdieva, S., Karim, Y. S., Abdalla, A. N., Mohamed, A., Mahmoud, M. Z. & Ali, H. M., (2022). Discharge enhancement in a triple-pipe heat exchanger filled with phase change material. Nanomaterials, 12(9), 1605. https://doi.org/10.3390/nano12091605
Jürgens, D., Palm, M., Singer, S., & Urban, K. (2007). Numerical optimization of the Voith-Schneider Propeller. Journal of Applied Mathematics and Mechanics, 87(10), 698–710. https://doi.org/10.1002/zamm.200510345
Kirsten, J. (1922). Propeller. US, 1432700. https://patents.google.com/patent/US1432700
Li, Z., Xia, D., & Zhou, Z. (2023). The role of double-tentacled cooperative kinematics on the hydrodynamics of a self-propelled swimmer. Journal of Applied Fluid Mechanics, 16(6), 1193-1207. https://doi.org/10.47176/jafm.16.06.1547
Manen, J. V. (1966). Results of systematic tests with vertical axis propellers. International shipbuilding progress, 13, 382-398. https://doi.org/10.3233/ISP-1966-1314802
Qian, X. N. (1963). Performance Analysis and Theory of Straight Wing Propulsion. China Shipbuilding. (03): 11-27. https://doi.org/ CNKI:SUN:ZGZC.0.1963-03-001.
Qin, D. H., Pan, G., Lee, S., Huang, Q., & Shi, Y. (2019). Underwater radiated noise reduction technology using sawtooth duct for pump-jet propulsor. Ocean Engineering, 188(9), 1−15. https://doi:10.1016/j.oceaneng.2019.106228
Raj, A., & Thakur, A. (2016). Fish-inspired robots: Design, sensing, actuation, and autonomy—a review of research. Bioinspiration & Biomimetics, 11(3), 031001. https://doi:10.1088/1748-3190/11/3/031001
Shi, L., Bayeul-Lainé, A. C., & Coutier-Delgosha, O. (2022), Numerical investigations on unsteady vortical flows and separation-induced transition over a cycloidal rotor at low Reynolds number, Energy Conversion and Management, 266, 115812. https://doi.org/10.1016/j.enconman.2022.115812
Valentini, P. (2001). Vertical axis and transversal flow nautical propulsor with continuous self-orientation of the blades. US, US06244919B1.
Voith Group (2021). Precise and safe maneuvering: Voith Schneider Propeller. https://d2euiryrvxi8z1.cloudfront.net/asset/445934742530/85785d8de54ef5402095017f6789f347/vt2070-english.pdf
Laucks, R., & Blickle, K. (1983). Amphibious Vehicle. US, 4419085.
Voith Gmb, H. & Co. KGa A. (2019, September 19). Voith scneider propellers. http://www.voith.com/ca-en/products-services/power-transmission/voith-schneider-propeller-10002.html
Walther, C. M., Saemi, F., Benedict, M. & Lakshminarayan, V. (2019). Symmetric versus asymmetric pitching of a cycloidal rotor blade at ultra-low reynolds numbers. Journal of Aircraft, 56(3). 1179-1199. https://doi.org/10.2514/1.C034776
Wheatley, J. B., & Windler, R., (1935). Wind-tunnel tests of a cyclogiro rotor. National Advisory Committee for Aeronautics Technical Note No. 528. https://ntrs.nasa.gov/citations/19930081270
Yu, H., Beng, T. W., & Bin, L. K. (2003). The analysis of cyclogyro using Unsteady Vortex Lattice Method [Conference session]. ICAS-Secretariat - 25th Congress of the International Council of the Aeronautical Sciences 2006, Hamburg, Germany.