Numerical Analysis of Mechanism on Heat Transfer Deterioration of Hexamethyldisiloxane in a Vertical Upward Tube at Supercritical Pressures

Document Type : Regular Article

Authors

1 College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China

2 Collaborative Innovation Center for Supporting Technology of Northwest Low-Carbon Towns, Lanzhou, Gansu, 730050, China

10.47176/jafm.17.9.2600

Abstract

The working fluids at supercritical pressures will experience abnormal heat transfer compared with those in a sub-critical state. In particular, the heat transfer deterioration (HTD) can make the wall temperature increase sharply in the tube, posing a challenge for the design of heat exchangers in the supercritical organic Rankine cycle (SORC). It is generally acknowledged that the effects of buoyancy and flow acceleration lead to abnormal heat transfer. However, a clear understanding of the interactions between the turbulent flow and heat transfer characteristics still needs to be further improved by obtaining the internal flow mechanism. The current study analyses the contours of the turbulent flow information under the different boundary conditions by means of validated CFD numerical simulation based on the previous experimental data and reveals the main causes of HTD and the impact mechanism of boundary conditions. The results reveal that two deteriorated extreme points are generated in a vertical upward tube with uniform heat flux for hexamethyldisiloxane at supercritical pressures. The buoyancy and flow acceleration effects caused by the drastic variation in fluid density near the pseudo-critical temperature can deform the velocity profile, thus reducing the local shear stress and turbulence intensity, and leading to the HTD. Moreover, HTD gets worse with the increase in heat flux and moderate with the rise in supercritical pressure. This study should support the data and theory for the refined design of heaters applied to the SORC in the future.

Keywords

Main Subjects


Ackerman, J. W. (1970). Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbed tubes. Journal of Heat Transfer, 92(3), 490-497. https://doi.org/10.1115/1.3449698
Cabeza, L. F., De Gracia, A., Fernández, A. I., & Farid, M. M. (2017). Supercritical CO2 as heat transfer fluid: a review. Applied Thermal Engineering, 125, 799-810. https://doi.org/10.1016/j.applthermaleng.2017.07.049
Cheng, X., & Schulenberg, T. (2001). Heat transfer at supercritical pressures - literature review and application to an HPLWR. Forschungszentrum Karlsruhe GmbH. https://edocs.tib.eu/files/e01fn01/336082746.pdf
Dai, X., Shi, L., & Qian, W. (2019). Thermal stability of hexamethyldisiloxane (MM) as a working fluid for organic Rankine cycle. International Journal of Energy Research, 43(2), 896–904. https://doi.org/10.1002/er.4323
Gallarini, S., Spinelli, A., Lietti, L., & Guardone, A. (2023). Thermal stability of linear siloxanes and their mixtures. Energy, 278, 127687.  https://doi.org/10.1016/j.energy.2023.127687
He, S., Jiang, P. X., Xu, Y. J., Shi, R. F., Kim, W. D., & Jackson, J. D. (2005). A computational study of convection heat transfer to CO2 at supercritical pressures in a vertical mini tube. International Journal of Thermal Sciences, 44(6), 521-530. https://doi.org/10.1016/j.ijthermalsci.2004.11.003
Holman, J. P. (2010). Heat Transfer. McGraw-Hill Series in Mechanical Engineering. The McGraw-Hill Companies. www.mhhe.com
Hou, J., Zhou, Y., Yuan, Y., & Huang, S. (2024). Numerical study on flow structure and heat transfer of supercritical CO2 in tubes with different inclination angles. Progress in Nuclear Energy, 168, 105028. https://doi.org/10.1016/j.pnucene.2023.105028
Huang, D., Wu, Z., Sunden, B., & Li, W. (2016). A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress. Applied Energy, 162, 494-505. https://doi.org/10.1016/j.apenergy.2015.10.080
Jackson, J. D. (2017). Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration. Applied Thermal Engineering, 124, 1481-1491. https://doi.org/10.1016/j.applthermaleng.2017.03.146
Jackson, J. D., Cotton, M. A., & Axcell, B. P. (1989). Studies of mixed convection in vertical tubes. International Journal of Heat and Fluid Flow, 10(1), 2-15. https://doi.org/10.1016/0142-727X(89)90049-0
Kim, D. E., & Kim, M. H. (2010). Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube. Nuclear Engineering and Design, 240(10), 3336-3349. https://doi.org/10.1016/j.nucengdes.2010.07.002
Kim, D. E., & Kim, M. H. (2011). Experimental investigation of heat transfer in vertical upward and downward supercritical co2 flow in a circular tube. International Journal of Heat and Fluid Flow, 32(1), 176-191. https://doi.org/10.1016/j.ijheatfluidflow.2010.09.001
Lai, N. A., Wendland, M., & Fischer, J. (2011). Working fluids for high-temperature organic rankine cycles. Energy, 36(1), 199-211.  https://doi.org/10.1016/j.energy.2010.10.051
Lecompte, S., Huisseune, H., Martijn, V. D. B., Vanslambrouck, B., & De Paepe, M. (2015). Review of organic rankine cycle (orc) architectures for waste heat recovery. Renewable & Sustainable Energy Reviews, 47(jul), 448-461. https://doi.org/10.1016/j.rser.2015.03.089
Lei, X., Li, H., & Zhang, W. (2016). Numerical analysis on heat transfer deterioration of supercritical fluid in the vertical upward tubes. Journal of Nuclear Engineering and Radiation Science, 2(3), 031017. https://doi.org/10.1115/1.4032872
Li, N., Pu, H., Zhou, L., Qu, H., Zhang, Y., & Dong, M. (2024). Numerical analysis of mixed convection phenomena in heat transfer to supercritical pressure carbon dioxide inside a horizontal miniature tube. Applied Thermal Engineering, 237, 121753. https://doi.org/10.1016/j.applthermaleng.2023.121753
Liu, M., Zhang, Z., Yang, X., Tu, J., & Jiang, S. (2023). Numerical study on heat transfer characteristics of supercritical water in straight and helical tubes. Applied Thermal Engineering, 226, 120276. https://doi.org/10.1016/j.applthermaleng.2023.120276
Liu, S., Huang, Y., Liu, G., Wang, J., & Leung, L. K. H. (2017). Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes. International Journal of Heat and Mass Transfer, 106, 1144-1156. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.093
Loni, R., Najafi, G., Bellos, E., Rajaee, F., & Mazlan, M. (2020). A review of industrial waste heat recovery system for power generation with organic rankine cycle: recent challenges and future outlook. Journal of Cleaner Production, 287, 125070.  https://doi.org/10.1016/j.jclepro.2020.125070
Mao, S., Zhou, T., Wei, D., Liu, W., & Zhang, Y. (2021). Heat transfer characteristics of supercritical water in channels A systematic literature review of 20 years of research. Applied Thermal Engineering, 197, 117403. https://doi.org/10.1016/j.applthermaleng.2021.117403
Mceligot, D. M., Coon, C. W., & Perkins, H. C. (1970). Relaminarization in tubes. International Journal of Heat and Mass Transfer, 13(2), 431-433. https://doi.org/10.1016/0017-9310(70)90118-3
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32, 1598-1605. https://doi.org/10.2514/3.12149
Mikielewicz, D. P., Shehata, A. M., Jackson, J. D., & Mceligot, D. M. (2002). Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data. International Journal of Heat and Mass Transfer, 45(21), 4333-4352. https://doi.org/10.1016/S0017-9310(02)00119-9
Mohseni, M., & Bazargan, M. (2012). A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids. Journal of Heat Transfer, 134(12), 1-7. https://doi.org/10.1115/1.4007313
Nieuwenhuyse, J. V., Lecompte, S., & Paepe, M. D. (2023). Current status of the thermohydraulic behavior of supercritical refrigerants: a review. Applied Thermal Engineering, 218, 119201. https://doi.org/10.1016/j.applthermaleng.2022.119201
Pioro, I. L. (2019). Current status of research on heat transfer in forced convection of fluids at supercritical pressures. Nuclear Engineering and Design, 354, 110207. https://doi.org/10.1016/j.nucengdes.2019.110207
Pizzarelli, M. (2018). The status of the research on the heat transfer deterioration in supercritical fluids: a review. International Communications in Heat and Mass Transfer, 95, 132-138. https://doi.org/10.1016/j.icheatmasstransfer.2018.04.006
Tu, Y., & Zeng, Y. (2021). Heat transfer and hydraulic characteristics of supercritical CO2 in cooled and heated horizontal semicircular channels. Journal of Applied Fluid Mechanics, 14(5), 1351–1362. https://doi.org/10.47176/jafm.14.05.32163
Wang, W., Dai, X., & Shi, L. (2022). Influence of thermal stability on organic rankine cycle systems using siloxanes as working fluids. Applied Thermal Engineering, 200, 117639.  https://doi.org/10.1016/j.applthermaleng.2021.117639
Xu, J., Zhang, H., Zhu, B., & Xie, J. (2020a). Critical supercritical-boiling-number to determine the onset of heat transfer deterioration for supercritical fluids. Solar Energy, 195, 27-36. https://doi.org/10.1016/j.solener.2019.11.036
Xu, G., Fu, J., Quan, Y., Wen, J., & Dong, B. (2020b). Experimental investigation on heat transfer characteristics of hexamethyldisiloxane (mm) at supercritical pressures for medium/high temperature orc applications. International Journal of Heat and Mass Transfer, 156, 119852. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119852
Xu, G., Ju, Y., Gao, W., Fu, J., & Dong, B. (2022). Experimental and numerical investigation of the effects of buoyancy and flow acceleration on the heat transfer of hexamethyldisiloxane (mm) at supercritical pressures. International Journal of Heat and Mass Transfer, 187, 122581. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122581
Yağli, H., Koç, Y., Koç, A., Gorgülü, A., & Tandiroğlu, A. (2016). Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic rankine cycle (orc) for biogas fuelled combined heat and power (chp) engine exhaust gas waste heat. Energy, 111, 923-932. https://doi.org/10.1016/j.energy.2016.05.119
Yang, Z., Bi, Q., Liu, Z., Guo, Y., & Yan, J. (2015). Heat transfer to supercritical pressure hydrocarbons flowing in a horizontal short tube. Experimental Thermal and Fluid Science, 61, 144-152. https://doi.org/10.1016/j.expthermflusci.2014.10.024
Yoo, J. Y. (2013). The turbulent flows of supercritical fluids with heat transfer. Annual Review of Fluid Mechanics, 45(1), 495-525. https://doi.org/10.1146/annurev-fluid-120710-101234
Zhu, B., Xu, J., Yan, C., & Xie, J. (2020). The general supercritical heat transfer correlation for vertical up-flow tubes: k number correlation. International Journal of Heat and Mass Transfer, 148(8), 119080. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119080
Zhu, J., Zhao, C., Cheng, Z., Lin, D., Tao, Z., & Qiu, L. (2019). Experimental investigation on heat transfer of n-decane in a vertical square tube under supercritical pressure. International Journal of Heat & Mass Transfer, 138(AUG.), 631-639. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.076