Analysis of a New Blade Design for a Vertical Axis Wind Turbine Called Flow Concentrator

Document Type : Regular Article

Authors

1 Michoacana University of Saint Nicolás of Hidalgo, Morelia, Michoacán C.P. 58000, Mexico

2 National Institute of Technology of Mexico, Santiago de Querétaro, Querétaro C.P. 76000, Mexico

10.47176/jafm.18.10.2488

Abstract

There is wind energy in urban and rural areas that is not being used sufficiently; since the wind in these areas tends to be turbulent and slow. For this reason, this study is focused on the design and analysis of a vertical axis wind turbine based on the Darrieus type, which seeks to improve self-starting, since it is one of the main problems of this type of turbine. To achieve this, the study focuses on the first stage of self-starting, also known as static torque, which occurs at an angular velocity close to zero. This stage is essential for reaching the second stage of self-starting, known as dynamic torque. To do this, a two-blade 9W Darrieus-type turbine is designed and compared with the new blade design called “flow concentrator” considering the maximum height, maximum diameter, and chord of both as constants. The analysis is performed using the Double-multiple stream tube theorem (DMST), computational fluid dynamics (CFD), and by carrying out experimental tests. The results obtained are analyzed at different wind speeds, from 3 to 8 m/s, and at different azimuthal angle positions (0°, +45°, -45°, 90°), where a considerable improvement in self-starting of up to 100% is observed in its most optimal position.

Keywords

Main Subjects


Alqurashi, F. & M. H. Mohamed (2020). Aerodynamic forces affecting the h-rotor darrieus wind turbine. Hindawi Modelling and Simulation in Engineering, 2020, 15. https://doi.org/10.1155/2020/1368369
Casillas Farfán, C., Solorio Díaz, G. , López Garza, V., Galván González, S. & Figueroa, K. (2022). Novel induction blade design for horizontal axis wind turbines to improve starting phase: CFD and testing analysis. Journal of Applied Fluid Mechanics, 15(6), 1635-1648. https://doi.org/10.47176/jafm.15.06.1163
Douak, M. & Aouachria, A. (2015). Starting torque study of darrieus wind turbine. International Journal of Physical and Mathematical Sciences, 9(8). https://doi.org/10.5281/zenodo.1108332
ANSYS Inc. (2024). ANSYS Fluent User's Guide.
Khalid, M. S. U., Wood, D., & Hemmati, A. (2022). Self-starting characterics and flow induced rotation of single and dual stage vertical axis wind turbines. Energies, 15. https://doi.org/10.3390/en15249365
Li, Y., Zhao, S., Qu, C., Feng, F., & Kotaro, T. (2019). Effects of offset blade on aerodynamic characteristics of small-scale vertical axis wind turbine. Journal of Thermal Science, 28(2), 326 - 339. https://doi.org/10.1007/s11630-018-1058-4
Lunt, P. A. (2005). An aerodynamic model for a vertical-axis wind turbine. UK: MEng Project Report, School of Engineering, University of Durham.
Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2009). Wind energy explained - theory, desgin and application. United Kingdom: John Wiley & Sons Ltd. https://doi.org/10.1002/9781119994367
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
Moghimi, M., & Motawej H. (2020). Developed DMST model for performance analysis and parametric evaluation of Gorlov vertical axis wind turbines. Sustainable Energy Technologies and Assessments, 37. https://doi.org/10.1016/j.seta.2019.100616
Mohamed, M. H. A. D. (2019). Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis. Elservier, 179, 1217-1234. https://doi.org/10.1016/j.energy.2019.05.069
Mueller, T., K. (1991). Oferta y demanda de energía y electricidad: consecuencias para el medio ambiente. Electricity and the Environment (págs. 1-5). Helsinki: OIEA. Obtenido de https://www.iaea.org/sites/default/files/33304980913_es.pdf
Paraschivoiu, I. (2002). Wind turbine design with emphasis on Darrieus concept. Québec, Canada: École Polytechnique de Montréal.
Radu Bogateanu, A. D. (2014). Reynolds number efects on the aerodynamic performance of small VAWTs. U.P.B. Sci. Bull, 76, 25-36. Corpus ID: 210129865
Saad, M. M. M. & Asmuin, N. (2014). comparison of horizontal axis wind turbines and vertical axis wind turbines. IOSR Journal of Engineering, 04, 27-30. https://doi.org/10.9790/3021-04822730
Sheldahl, R. E., Klimas, P. C. & Feltz, L. V. (1980). Aerodynamic performance of a 5m diameter darrieus turbine. Journal of Energy, 4(5), 227-232. https://doi.org/10.2514/3.48025
Siddiqui, A. S., Mian, S. N., M. Alam, M. Saleem ul Haq; A. H. Memon, & M. S. Jamil (2018). Experimental study to assess the performance of combined Savonius Darrieus vertical axis wind turbine at different arrangements. IEEE. https://doi.org/10.1109/INMIC.2018.8595538
Willy, T., Tjukup M., Sohif, M., M. H. Ruslan, & K. Sopian (2015). Darrieus vertical axis wind turbine for power generation I: Assesment of Darrieus VAWT configurations. Renewable Energy, 75, 50-67. http://dx.doi.org/10.1016/j.renene.2014.09.038
Xin, J., Zhao, G., KeJun, G., & Wenbin, J. (2015). Darrieus vertical axis wind turbine: Basic research methods. Renewable and Sustainable Energy Reviews, 42, 212-225. https://doi.org/10.1016/j.rser.2014.10.021
Xu, Z., Dong, X., Li, K., Zhou, Q. & Zhao, Y. (2024). Study of the Self-starting Performance of a Vertical-axis Wind Turbine. Journal of Applied Fluid Mechanics, 17(6), 1261-1276. https://doi.org/10.47176/jafm.17.6.2295
Yunus, C., D. Ingham, Lin, M., & Pourkashanian, M. (2022). Design and aerodynamic performance analyses of the self-starting H-typ VAWT having J-shaped aerofoils considering various design parameters using CFD. Energy, 251. https://doi.org/10.1016/j.energy.2022.123881
Zamani, M., Maghrebi, M. J., & Varedi, S. R. (2016). Starting torque improvement using J-shaped straght-bladed Darrieus vertical axis wind turbine by means of numerical simulation. Renewable Energy, 109-126. https://doi.org/10.1016/j.renene.2016.03.069
Zemamou, M., Aggour, M., & Toumi, A. (2017). Review of savonius wind turbine design and performance. Energy Procedia, 141, 383-388. https://doi.org/10.1016/j.egypro.2017.11.047
Tasneem, Z., Al Noman, A., Das, S. K., Saha, D. K., Islam, Md. R., Ali, Md. F., Badal, Md. F. R., Ahamed, Md. H., Moyeen, S. I.,& F. Alam (2020). An analytical review on the evaluation of wind resource and wind turbine for urban application: prospect and challenges. Developments in the Built Environment, 4. https://doi.org/10.1016/j.dibe.2020.100033