Aghajannezhad, P., & Sellier, M. (2022). The effects of surface roughness on the flow in multiple connected fractures.
Fluid Dynamics Research. 54(1), Article 015504.
https://doi.org/10.1088/1873-7005/ac49a1
Balogh, P., & Bagchi, P. (2018). Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks.
Physics of Fluids, 30(5), Article 051902.
https://doi.org/10.1063/1.5024783
Bao, Y. Shi, X., Wang, Z [Zhipeng], Zhu, H., Srinil, N., Li, A., Zhou, D., & Fan, D. (2023). Deep reinforcement learning for propulsive performance of a flapping foil.
Physics of Fluids, 35(10), Article 103610.
https://doi.org/10.1063/5.0169982
Beighley, R., Spedden, E., Sekeroglu, K., Atherton, T. J., Demirel, M. C., & Staii, C. (2012). Neuronal alignment on asymmetric textured surfaces.
Applied Physics Letters, 101(14), Article 143701.
https://doi.org/10.1063/1.4755837
Bejan, A. (2000). Shape and structure, from engineering to nature. Cambridge university press. ISBN: 0521793882
Bejan, A. (2001). The tree of convective heat streams: its thermal insulation function and the predicted ¾-power relation between body heat loss and body size.
International Journal of Heat and Mass Transfer,
44(4), 699–704.
https://doi.org/10.1016/S0017-9310(00)00138-1
Calamas, D., & Baker, J. (2013). Tree-like branching fins: Performance and natural convective heat transfer behavior.
International Journal of Heat and Mass Transfer,
62, 350–361.
https://doi.org/10.2514/1.T3950
Chen, Y. (2024). Flow and heat transfer performance of asymmetric fractal tree network in fractal porous media.
Physics of Fluids,
36, Article 023319.
https://doi.org/10.1063/5.0193677
Chen, Y. [Yongping], & Cheng, P. (2002). Heat transfer and pressure drop in fractal tree-like microchannel nets.
International Journal of Heat and Mass Transfer, 45(13), 2643-2648.
https://doi.org/10.1016/S0017-9310(02)00013-3
Doyeux, V., Podgorski, T., Peponas, S., Ismaïl, M., & Coupier, G. (2011). Spheres in the vicinity of a bifurcation: elucidating the zweifach–fung effect.
Journal of Fluid Mechanics, 674, 359-388.
https://doi.org/10.1017/s0022112010006567
Guha, A., & Pradhan, K. (2017). Secondary motion in three-dimensional branching networks.
Physics of Fluids, 29(6), Article 063602.
https://doi.org/10.1063/1.4984919
Guha, A., & Sengupta, S. (2016). Effects of finiteness on the thermo-fluid-dynamics of natural convection above horizontal plates.
Physics of Fluids, 28(6), Article 063603.
https://doi.org/10.1063/1.4953382
Jia, J. (2020). Analysis of temperature rise in high-speed permanent magnet synchronous traction motors by coupling the equivalent thermal circuit method and computational fluid dynamics.
Fluid Dynamics & Materials Processing, 16(5), 919-933.
https://doi.org/10.32604/fdmp.2020.09566
Kim, Y., & Peskin, C. S. (2008). Numerical study of incompressible fluid dynamics with nonuniform density by the immersed boundary method.
Physics of Fluids, 20(6), Article 062101.
https://doi.org/10.1063/1.2931521
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598–1605.
https://doi.org/10.2514/3.12149
Murray, C. D. (1926a). The physiological principle of minimum work applied to the angle of branching of arteries. The Journal of General Physiology, 9(6), 835.
Murray, C. D. (1926b). The physiological principle of minimum work. I: The vascular system and the cost of blood volume.
Proceedings of the National Academy of Sciences of the United States of America, 12(5), 207-214.
http://www.jstor.org/stable/85001
Murray, C. D. (1927). A relationship between circumference and weight in trees and its bearing on branching angles.
The Journal of General Physiology,
10(5), 725- 729.
https://doi.org/10.1085/jgp.10.5.725
Ostalowski, K., & Tan, J. (2022). Direct simulation of blood flow with heterogeneous cell suspensions in a patient-specific capillary network.
Physics of Fluids, 34(4), Article 041912.
https://doi.org/10.1063/5.0088342
Pradhan, K., & Guha, A. (2019). Fluid dynamics of oscillatory flow in three-dimensional branching networks.
Physics of Fluids, 31(6), Article 063601.
https://doi.org/10.1063/1.5093724
Ren, W., Zhang, X., Zhang, Y., & Lu, X. (2023). Investigation of motion characteristics of coarse particles in hydraulic collection.
Physics of Fluids. 35(4), Article 043322.
https://doi.org/10.1063/5.0142221
Ren, Y. (2024). Coupled CFD-DEM numerical simulation of the interaction of a flow-transported rag with a solid cylinder.
Fluid Dynamics & Materials Processing, 20(7), 1593-1609.
https://doi.org/10.32604/fdmp.2024.046274
Smink, J. S., Venner, C. H., Visser, C. W., & Hagmeijer, R. (2023). Engineering of branched fluidic networks that minimise energy dissipation.
Journal of Fluid Mechanics,
967(A6).
https://doi.org/10.1017/jfm.2023.433
Wang, Z., Sui, Y., Salsac, A. V., Barthès-Biesel, D., & Wang, W. (2018). Path selection of a spherical capsule in a microfluidic branched channel: towards the design of an enrichment device.
Journal of Fluid Mechanics, 849, 136-162.
https://doi.org/10.1017/jfm.2018.414
White, F. M. (2006). Viscous Fluid Flow (3rd ed.). McGraw Hill. ISBN: 978-0072402315.
Wilcox, D. C. (2006). Turbulence modeling for CFD (3rd ed.). DCW Industries. ISBN: 9781928729082
Xu, P., & Yu, B. (2006). The scaling laws of transport properties for fractal-like tree networks.
Journal of Applied Physics,
100(10), Article 104906.
https://doi.org/10.1063/1.2392935
Ye, T., & Peng, L. (2019). Motion, deformation, and aggregation of multiple red blood cells in three-dimensional microvessel bifurcations.
Physics of Fluids, 31(2), Article 021903.
https://doi.org/10.1063/1.5079836
Yu, X., Zhang, C., Teng, J., Huang, S., Jin, S., Lian, Y., Cheng, C., Xu, T., Chu, J. ‑C., & Chang, Y. ‑J. (2012). A study on the hydraulic and thermal characteristics in fractal tree-like microchannels by numerical and experimental methods.
International Journal of Heat and Mass Transfer,
55(25-26), 7499–7507.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.050
Zhao, B., Wang, Z., Duan, W., Ertekin, R. C., Hayatdavoodi, M., & Zhang, T. (2020). Experimental and numerical studies on internal solitary waves with a free surface.
Journal of Fluid Mechanics, 899, Article A17.
https://doi.org/10.1017/jfm.2020.451