Multi-objective Optimization of Micro Wind Generator Blade Structure Parameters based on Response Surface Methodology and Non-dominated Sorting Genetic Algorithm III

Document Type : Regular Article

Authors

1 College of Mechanical and Vehicle Engineering, Bengbu University, Bengbu, Anhui, 233030, China

2 Anhui Province Additive Manufacturing Engineering Research Center, Bengbu University, Bengbu, Anhui, 233030, China

3 College of Intelligent Manufacturing, Anhui Science and Technology University, Bengbu, Anhui, 233030, China

10.47176/jafm.18.11.3575

Abstract

This study investigates the effect of blade structural parameters on the power generation performance—specifically output current and voltage of a micro wind generator, using experimental testing and multi-objective optimization. The influence of blade diameter (BD), blade inclination angle (BA), blade number (BN), and blade root draft angle (BRA) on generator performance is analyzed. The Box-Behnken Design (BBD) of response surface methodology (RSM) is employed to assess variance and to establish a quadratic polynomial model linking structural parameters to performance metrics. Computational fluid dynamics (CFD) simulations are used to interpret experimental observations. The NSGA-III algorithm is applied to optimize the parameter set. Results indicate that BRA has negligible effect on performance. The ranking of influence on output current and voltage is BN > BA > BD, and on blade weight is BN > BD > BA. The optimal configuration comprises a BD of 105 mm, an inclination angle of 35.92°, and 6 blades. Validation by experiment and CFD confirms that this configuration yields higher output current and voltage with only a modest increase in blade weight, providing practical guidance for the structural design of micro wind generators.

Keywords

Main Subjects


Akour, S. N., Al-Heymari, M., Ahmed, T., & Khalil, K. A. (2018). Experimental and theoretical investigation of micro wind turbine for low wind speed regions. Renewable Energy, 116(Part A), 215–223. https://doi.org/10.1016/j.renene.2017.09.076
Araújo, F. R. P. d., Pereira, M. G., Freitas, M. A. V., da Silva, N. F., & Dantas, E. J. d. A. (2021). Bigger is not always better: Review of small wind in Brazil. Energies, 14(4), 976. https://doi.org/10.3390/en14040976
Bourne, M., Arjomandi, M., & Kurji, R. (2013). The economic assessment of micro wind turbines for South Australia. Energy Systems, 4, 355–377. https://doi.org/10.1007/s12667-013-0081-5
De Oliveira, U. W., Francescatto, M. B., & Roos, C. (2021). Viabilidade econômica de microgeradores eólicos para residências unifamiliares. Brazilian Journal of Business, 3(4), 2838–2850. https://doi.org/10.34140/bjbv3n4-006
Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601. https://doi.org/10.1109/TEVC.2013.2281535
Deng, S., Cheng, X., Wu, H., & Hu, Y. (2024). Multi-objective optimization of bias current coefficient based on NSGA-III for active magnetic bearing with redundant electromagnetic actuators. Engineering Computations, 41(6), 1549-1571. https://doi.org/10.1108/EC-03-2023-0127
Gu, Q., Xu, Q., & Li, X. (2022). An improved NSGA-III algorithm based on distance dominance relation for many-objective optimization. Expert Systems with Applications, 207, 117738.  https://doi.org/10.1016/j.eswa.2022.117738
Huda, S. M. A., Arafat, M. Y., & Moh, S. (2022). Wireless Power Transfer in Wirelessly Powered Sensor Networks: A Review of Recent Progress. Sensors, 22(8), 2952. https://doi.org/10.3390/s22082952
Kumar, N., & Prakash, O. (2023). Analysis of wind energy resources from high rise building for micro wind turbine: A review. Wind Engineering, 47(1), 190–219. https://doi.org/10.1177/0309524X221118684
Leung, D. Y. C., Deng, Y., & Leung, M. K. H. (2011). Parametric study of a fan-bladed micro-wind turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225(8), 1120-1131.  https://doi.org/10.1177/0957650911413974
Li, Q., Wang, Y., Li, X., Li, X., Zhang, G., Du, Y., & Xu, W. (2024). Investigation and optimization of textured water-lubricated journal bearings using multi-objective optimization. Journal of Applied Fluid Mechanics, 17(9), 1912-1928. https://doi.org/ 10.47176/jafm.17.9.2581
Liu, Q., Liu, X., Wu, J., & Li, Y. (2019). An improved NSGA-III algorithm using genetic k-means clustering algorithm. IEEE Access, 7, 185239-185249. https://doi.org/10.1109/ACCESS.2019.2960531
Maleki, E., Unal, O., & Kashyzadeh, K. R. (2021). Influences of shot peening parameters on mechanical properties and fatigue behavior of 316 L steel: experimental, Taguchi method and response surface methodology. Metals and Materials International, 27, 4418–4440. https://doi.org/10.1007/s12540-021-01013-7
Marin, A., Kishore, R., Schaab, D., Vuckovic, D. & Priya, S. (2016). Micro Wind Turbine for Powering Wireless Sensor Nodes. Energy Harvesting and Systems, 3(2), 139-152. https://doi.org/10.1515/ehs-2013-0004
Mi, S., Liu, J., Cai, L., & Xu, C. (2024). Multi-objective optimization of two-phase ice slurry flow and heat transfer characteristics in helically coiled tubes with RSM and NSGA-II. International Journal of Thermal Sciences, 199, 108942. https://doi.org/10.1016/j.ijthermalsci.2024.108942
Minhas, N., Thakur, A., Mehlwal, S., Verma, R., Sharma, V. S., & Sharma, V. (2021). Multi-variable optimization of the shot blasting of additively manufactured AlSi10Mg plates for surface roughness using response surface methodology. Arabian Journal for Science and Engineering, 46, 11671–11685. https://doi.org/10.1007/s13369-021-05654-z
Miranda, C., Basso, A. D., Francucci, G. M., & Ludueña, L. N. (2022). Design of blades for household small wind turbines. International Journal of Energy and Environmental Engineering, 13, 621–642. https://doi.org/10.1007/s40095-021-00464-3
Ramírez-Elías, V. A., Damian-Escoto, N., Choo, K., Gómez-Martínez, M. A., Balvantín-García, A., & Diosdado-De la Peña, J. A. (2022). Structural analysis of carbon fiber 3D-printed ribs for small wind turbine blades. Polymers, 14(22), 4925. https://doi.org/10.3390/polym14224925
Rocha, P. A., de Araujo, J. W. C., Lima, R. J. P., da Silva, M. E. V., Albiero, D., de Andrade, C. F., & Carneiro, F. O. M. (2018). The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments. Energy, 148, 169–178. https://doi.org/10.1016/j.energy.2018.01.096
Sant, T., Farrugia, R. N., Muscat, M., Caruana, C., Axisa, R., Borg, A., Cassar, C. M., Cassar, J., Cordina, C., Farrugia, A., & Schembri, S. (2020). Development and performance testing of a small, multi-bladed wind turbine. Wind Engineering, 44(1), 3–20. https://doi.org/10.1177/0309524X19849845
Sharma, S., Gupta, V., & Mudgal, D. (2023). Parametric experimental investigation of additive manufacturing-based distal ulna bone plate: a response surface methodology-based design approach. Rapid Prototyping Journal, 29(5), 1080–1096. https://doi.org/10.1108/RPJ-06-2022-0205
Shen, X., Yang, H., Chen, J., Zhu, X., & Du, Z. (2016). Aerodynamic shape optimization of non-straight small wind turbine blades. Energy Conversion and Management, 119, 266–278. https://doi.org/10.1016/j.enconman.2016.04.008
Sunderland, K. M., Narayana, M., Putrus, G., Conlon, M. F., & McDonald, S. (2016). The cost of energy associated with micro wind generation: international case studies of rural and urban installations. Energy, 109, 818–829. https://doi.org/10.1016/j.energy.2016.05.045
Suresh, A., Raja Kumar, S., Aljafaric, B., & Thanikanti, S. B. (2024). Investigations of the performance of 3D printed micro wind turbine composed of PLA material. Heliyon, 10(3), e25356. https://doi.org/10.1016/j.heliyon.2024.e25356
Tiam Kapen, P., Medjo Nouadje, B. A., Tchuen, G., & Tchinda, R. (2020). Numerical simulation of micro wind turbine performance and efficiency for low wind speed Cameroonian's cities. International Journal of Ambient Energy, 43(1), 2727–2741. https://doi.org/10.1080/01430750.2020.1768894
Umar, M., Jame, N., & Nayan, N. M. (2020). Effect of different types of blades on miniature wind turbine energy harvesting output. Journal of Physics: Conference Series, 1432, 012053. https://doi.org/10.1088/1742-6596/1432/1/012053
Vedovelli, M., Eltayesh, A., Natili, F., & Castellani, F. (2022). Experimental and numerical investigation of the effect of blades number on the dynamic response of a small horizontal-axis wind turbine. Energies, 15(23), 9134. https://doi.org/10.3390/en15239134
Wang, Y., Wang, G., Yao, G., Shen, Q., Yu, X., & He, S. (2023). Combining GA-SVM and NSGA-III multi-objective optimization to reduce the emission and fuel consumption of high-pressure common-rail diesel engine. Energy, 278(Part A), 127965. https://doi.org/10.1016/j.energy.2023.127965
Yu, J., Jin, Z., Yu, Y., Zhao, M., Ma, W., & Wu, J. (2024). Multi-objective optimization of variable-stiffness composite for CFRP-winding buckle arrestor by using NSGA-III. Marine Structures, 96, 103633.  https://doi.org/10.1016/j.marstruc.2024.103633
Yu, Y., Pan, Y., Chen, Q., Zeng, D., Hu, Y., Goh, H.-H., Niu, S., & Zhao, Z. (2022). Cogging torque minimization of surface-mounted permanent magnet synchronous motor based on RSM and NSGA-II. Actuators, 11(12), 379. https://doi.org/10.3390/act11120379
Zawadzki, K., Kuzalski, C., Śmiechowicz, W., Tarkowski, M., Kądrowski, D., Stępień, M., Kulak, M., & Lipian, M. (2020). Assessment of blade strength for small wind turbine applications. E3S Web of Conferences, 160, 01007. https://doi.org/10.1051/e3sconf/202016001007
Zhang, Z., Yan, J., Lu, X., Zhang, T., & Wang, H. (2023). Optimization of porosity and surface roughness of CMT-P wire arc additive manufacturing of AA2024 using response surface methodology and NSGA-II. Journal of Materials Research and Technology, 24, 6923–6941. https://doi.org/10.1016/j.jmrt.2023.04.259
Zhao, Y., Cui, L., Sivalingam, V., & Sun, J. (2023). Understanding machining process parameters and optimization of high-speed turning of NiTi SMA using response surface method (RSM) and genetic algorithm (GA). Materials, 16(17), 5786. https://doi.org/10.3390/ma16175786
Zuo, W., Li, D., Li, Q., Cheng, Q., Zhou, K., & E, J. (2023). Multi-objective optimization of multi-channel cold plate under intermittent pulsating flow by RSM and NSGA-II for thermal management of electric vehicle lithium-ion battery pack. Energy, 283, 129085. https://doi.org/10.1016/j.energy.2023.129085