Multi-objective Optimization of Micro Wind Generator Blade Structure Parameters based on Response Surface Methodology and Non-dominated Sorting Genetic Algorithm III

Document Type : Regular Article

Authors

1 College of Mechanical and Vehicle Engineering, Bengbu University, Bengbu, Anhui, 233030, China

2 Anhui Province Additive Manufacturing Engineering Research Center, Bengbu University, Bengbu, Anhui, 233030, China

3 College of Intelligent Manufacturing, Anhui Science and Technology University, Bengbu, Anhui, 233030, China

Abstract

This study investigates the effect of blade structural parameters on the power generation performance—specifically output current and voltage of a micro wind generator, using experimental testing and multi-objective optimization. The influence of blade diameter (BD), blade inclination angle (BA), blade number (BN), and blade root draft angle (BRA) on generator performance is analyzed. The Box-Behnken Design (BBD) of response surface methodology (RSM) is employed to assess variance and to establish a quadratic polynomial model linking structural parameters to performance metrics. Computational fluid dynamics (CFD) simulations are used to interpret experimental observations. The NSGA-III algorithm is applied to optimize the parameter set. Results indicate that BRA has negligible effect on performance. The ranking of influence on output current and voltage is BN > BA > BD, and on blade weight is BN > BD > BA. The optimal configuration comprises a BD of 105 mm, an inclination angle of 35.92°, and 6 blades. Validation by experiment and CFD confirms that this configuration yields higher output current and voltage with only a modest increase in blade weight, providing practical guidance for the structural design of micro wind generators.

Keywords

Main Subjects


Akour, S. N., Al-Heymari, M., Ahmed, T., & Khalil, K. A. (2018). Experimental and theoretical investigation of micro wind turbine for low wind speed regions. Renewable Energy, 116(Part A), 215–223. https://doi.org/10.1016/j.renene.2017.09.076
Araújo, F. R. P. d., Pereira, M. G., Freitas, M. A. V., da Silva, N. F., & Dantas, E. J. d. A. (2021). Bigger is not always better: Review of small wind in Brazil. Energies, 14(4), 976. https://doi.org/10.3390/en14040976
Bourne, M., Arjomandi, M., & Kurji, R. (2013). The economic assessment of micro wind turbines for South Australia. Energy Systems, 4, 355–377. https://doi.org/10.1007/s12667-013-0081-5
De Oliveira, U. W., Francescatto, M. B., & Roos, C. (2021). Viabilidade econômica de microgeradores eólicos para residências unifamiliares. Brazilian Journal of Business, 3(4), 2838–2850. https://doi.org/10.34140/bjbv3n4-006
Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601. https://doi.org/10.1109/TEVC.2013.2281535
Deng, S., Cheng, X., Wu, H., & Hu, Y. (2024). Multi-objective optimization of bias current coefficient based on NSGA-III for active magnetic bearing with redundant electromagnetic actuators. Engineering Computations, 41(6), 1549-1571. https://doi.org/10.1108/EC-03-2023-0127
Gu, Q., Xu, Q., & Li, X. (2022). An improved NSGA-III algorithm based on distance dominance relation for many-objective optimization. Expert Systems with Applications, 207, 117738.  https://doi.org/10.1016/j.eswa.2022.117738
Huda, S. M. A., Arafat, M. Y., & Moh, S. (2022). Wireless Power Transfer in Wirelessly Powered Sensor Networks: A Review of Recent Progress. Sensors, 22(8), 2952. https://doi.org/10.3390/s22082952
Kumar, N., & Prakash, O. (2023). Analysis of wind energy resources from high rise building for micro wind turbine: A review. Wind Engineering, 47(1), 190–219. https://doi.org/10.1177/0309524X221118684
Leung, D. Y. C., Deng, Y., & Leung, M. K. H. (2011). Parametric study of a fan-bladed micro-wind turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225(8), 1120-1131.  https://doi.org/10.1177/0957650911413974
Li, Q., Wang, Y., Li, X., Li, X., Zhang, G., Du, Y., & Xu, W. (2024). Investigation and optimization of textured water-lubricated journal bearings using multi-objective optimization. Journal of Applied Fluid Mechanics, 17(9), 1912-1928. https://doi.org/ 10.47176/jafm.17.9.2581
Liu, Q., Liu, X., Wu, J., & Li, Y. (2019). An improved NSGA-III algorithm using genetic k-means clustering algorithm. IEEE Access, 7, 185239-185249. https://doi.org/10.1109/ACCESS.2019.2960531
Maleki, E., Unal, O., & Kashyzadeh, K. R. (2021). Influences of shot peening parameters on mechanical properties and fatigue behavior of 316 L steel: experimental, Taguchi method and response surface methodology. Metals and Materials International, 27, 4418–4440. https://doi.org/10.1007/s12540-021-01013-7
Marin, A., Kishore, R., Schaab, D., Vuckovic, D. & Priya, S. (2016). Micro Wind Turbine for Powering Wireless Sensor Nodes. Energy Harvesting and Systems, 3(2), 139-152. https://doi.org/10.1515/ehs-2013-0004
Mi, S., Liu, J., Cai, L., & Xu, C. (2024). Multi-objective optimization of two-phase ice slurry flow and heat transfer characteristics in helically coiled tubes with RSM and NSGA-II. International Journal of Thermal Sciences, 199, 108942. https://doi.org/10.1016/j.ijthermalsci.2024.108942
Minhas, N., Thakur, A., Mehlwal, S., Verma, R., Sharma, V. S., & Sharma, V. (2021). Multi-variable optimization of the shot blasting of additively manufactured AlSi10Mg plates for surface roughness using response surface methodology. Arabian Journal for Science and Engineering, 46, 11671–11685. https://doi.org/10.1007/s13369-021-05654-z
Miranda, C., Basso, A. D., Francucci, G. M., & Ludueña, L. N. (2022). Design of blades for household small wind turbines. International Journal of Energy and Environmental Engineering, 13, 621–642. https://doi.org/10.1007/s40095-021-00464-3
Ramírez-Elías, V. A., Damian-Escoto, N., Choo, K., Gómez-Martínez, M. A., Balvantín-García, A., & Diosdado-De la Peña, J. A. (2022). Structural analysis of carbon fiber 3D-printed ribs for small wind turbine blades. Polymers, 14(22), 4925. https://doi.org/10.3390/polym14224925
Rocha, P. A., de Araujo, J. W. C., Lima, R. J. P., da Silva, M. E. V., Albiero, D., de Andrade, C. F., & Carneiro, F. O. M. (2018). The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments. Energy, 148, 169–178. https://doi.org/10.1016/j.energy.2018.01.096
Sant, T., Farrugia, R. N., Muscat, M., Caruana, C., Axisa, R., Borg, A., Cassar, C. M., Cassar, J., Cordina, C., Farrugia, A., & Schembri, S. (2020). Development and performance testing of a small, multi-bladed wind turbine. Wind Engineering, 44(1), 3–20. https://doi.org/10.1177/0309524X19849845
Sharma, S., Gupta, V., & Mudgal, D. (2023). Parametric experimental investigation of additive manufacturing-based distal ulna bone plate: a response surface methodology-based design approach. Rapid Prototyping Journal, 29(5), 1080–1096. https://doi.org/10.1108/RPJ-06-2022-0205
Shen, X., Yang, H., Chen, J., Zhu, X., & Du, Z. (2016). Aerodynamic shape optimization of non-straight small wind turbine blades. Energy Conversion and Management, 119, 266–278. https://doi.org/10.1016/j.enconman.2016.04.008
Sunderland, K. M., Narayana, M., Putrus, G., Conlon, M. F., & McDonald, S. (2016). The cost of energy associated with micro wind generation: international case studies of rural and urban installations. Energy, 109, 818–829. https://doi.org/10.1016/j.energy.2016.05.045
Suresh, A., Raja Kumar, S., Aljafaric, B., & Thanikanti, S. B. (2024). Investigations of the performance of 3D printed micro wind turbine composed of PLA material. Heliyon, 10(3), e25356. https://doi.org/10.1016/j.heliyon.2024.e25356
Tiam Kapen, P., Medjo Nouadje, B. A., Tchuen, G., & Tchinda, R. (2020). Numerical simulation of micro wind turbine performance and efficiency for low wind speed Cameroonian's cities. International Journal of Ambient Energy, 43(1), 2727–2741. https://doi.org/10.1080/01430750.2020.1768894
Umar, M., Jame, N., & Nayan, N. M. (2020). Effect of different types of blades on miniature wind turbine energy harvesting output. Journal of Physics: Conference Series, 1432, 012053. https://doi.org/10.1088/1742-6596/1432/1/012053
Vedovelli, M., Eltayesh, A., Natili, F., & Castellani, F. (2022). Experimental and numerical investigation of the effect of blades number on the dynamic response of a small horizontal-axis wind turbine. Energies, 15(23), 9134. https://doi.org/10.3390/en15239134
Wang, Y., Wang, G., Yao, G., Shen, Q., Yu, X., & He, S. (2023). Combining GA-SVM and NSGA-III multi-objective optimization to reduce the emission and fuel consumption of high-pressure common-rail diesel engine. Energy, 278(Part A), 127965. https://doi.org/10.1016/j.energy.2023.127965
Yu, J., Jin, Z., Yu, Y., Zhao, M., Ma, W., & Wu, J. (2024). Multi-objective optimization of variable-stiffness composite for CFRP-winding buckle arrestor by using NSGA-III. Marine Structures, 96, 103633.  https://doi.org/10.1016/j.marstruc.2024.103633
Yu, Y., Pan, Y., Chen, Q., Zeng, D., Hu, Y., Goh, H.-H., Niu, S., & Zhao, Z. (2022). Cogging torque minimization of surface-mounted permanent magnet synchronous motor based on RSM and NSGA-II. Actuators, 11(12), 379. https://doi.org/10.3390/act11120379
Zawadzki, K., Kuzalski, C., Śmiechowicz, W., Tarkowski, M., Kądrowski, D., Stępień, M., Kulak, M., & Lipian, M. (2020). Assessment of blade strength for small wind turbine applications. E3S Web of Conferences, 160, 01007. https://doi.org/10.1051/e3sconf/202016001007
Zhang, Z., Yan, J., Lu, X., Zhang, T., & Wang, H. (2023). Optimization of porosity and surface roughness of CMT-P wire arc additive manufacturing of AA2024 using response surface methodology and NSGA-II. Journal of Materials Research and Technology, 24, 6923–6941. https://doi.org/10.1016/j.jmrt.2023.04.259
Zhao, Y., Cui, L., Sivalingam, V., & Sun, J. (2023). Understanding machining process parameters and optimization of high-speed turning of NiTi SMA using response surface method (RSM) and genetic algorithm (GA). Materials, 16(17), 5786. https://doi.org/10.3390/ma16175786
Zuo, W., Li, D., Li, Q., Cheng, Q., Zhou, K., & E, J. (2023). Multi-objective optimization of multi-channel cold plate under intermittent pulsating flow by RSM and NSGA-II for thermal management of electric vehicle lithium-ion battery pack. Energy, 283, 129085. https://doi.org/10.1016/j.energy.2023.129085