Alekseenko, S. V., Kuibin, P. A., Shtork, S. I., Шторк, С., Skripkin, S., & Tsoy, M. (2016). Vortex reconnection in a swirling flow.
Jetp Letters, 103(7), 455-459.
https://doi.org/10.1134/s002136401607002x
Chen, C., Li, D., Ji, Q., Wang, J., Xu,W. (2006). PIV Testing of Internal Flow Field within the draft tube of Francis Turbines.
Journal of Mechanical Engineering, 42(12), 83-88.
https://doi.org/10.1177/16878132241292399
Dragica, J. & Lipej, A. (2011). Numerical prediction of non-cavitating and cavitating vortex rope in a Francis turbine draft tube[J]. Strojniški vestnik-
Journal of Mechanical Engineering, 2011, 57(6), 445-456.
https://doi.org/10.5545/sv-jme.2010.068
Fanelli, M. (1989). The vortex rope within the draft tube of Francis turbines operating at partial load: a proposal for a mathematical model.
Journal of hydraulic research, 27(6), 769-807.
https://doi.org/10.1080/00221688909499108
Favey, H. T., & Cassidy, J. (1970). Frequency and amplitude of pressure generated by swirling flow. Proceedings of IAHR 5th Symposium. Stockholm: IAHR.
Goyal, R., Cervantes, M. J., & Gandhi, B. K. (2017a). Vortex rope formation in a high head model francis turbine.
Journal of Fluids Engineering-Transactions of The Asme, 139 (0411024).
https://doi.org/10.1115/1.4035224
Goyal, R., Gandhi, B. K., & Cervantes, M. J. (2017b). Experimental study of mitigation of a spiral vortex breakdown at high Reynolds number under an adverse pressure gradient.
Physics of Fluids, 29(10410410).
https://doi.org/10.1063/1.4999123
Han, F., Fan, C., Gui, Z., Zhang, W. (2006). Prediction of irregular pressure pulsations in unsteady flow in elbow-type draft tube.
Hydropower Generation, 32(2), 49-51.
https://doi.org/0559-9342(2006)05-0052-03
Li, J., Liu, S., Wu, Y., & Zhu, Y. (2010). Experimental and numerical simulation of the fly-away transition process in mixed-flow pump-turbines.
Large Electrical Machinery Technology, 2010(6), 44-49.
https://doi.org/1000-3983(2010)06-0044-06
Li, W., Li, Z., Han, W., Li, R., Zhang, Y. (2025). Mechanism of bubble generation in ferrofluid micro-pumps and key parameters influencing performance.
Powder Technology, 467(15), 121562.
https://doi.org/10.1016/j.powtec.2025.121562
Liao, W., Ji, J., Lu, P., & Luo, X. (2008). Effect of main shaft center hole aeration on internal flow in draft tube.
Journal of Hydraulic Engineering, 39(8), 1005-1011.
https://doi.org/0559-9350(2008)-1005-07
Litvinov, I., Shtork, S., Gorelikov, E., Mitryakov, A., & Hanjalić, K. (2018). Unsteady regimes and pressure pulsations in draft tube of a model hydro turbine in a range of off-design conditions.
Experimental Thermal and Fluid Science, 91, 410-422.
https://doi.org/10.1016/j.expthermflusci.2017.10.030
Liu, B., Yang, Q., Jiang, T., Zheng, Y., Zhang, Y. (2024) Analysis of Pressure Pulsation Characteristics and Vortex Belt Characteristics of Pump-Wheel Turbine Tail Water Chamber.
Rural Water Conservancy and Hydropower in China, (07), 241-248.
https://doi.org/10.12396/znsd.2319
Liu, J., Yang, J., Xiao, H., Yu, W., & Shen, C. (2006). Model experiment of pressure distribution at the inlet of draft tube during the transition process.
Journal of Wuhan University: Engineering Edition, 39(1), 39-43.
https://doi.org/1671-8844(2006)01-039-05
Liu, W., Qin, K., Xu, Y., & Wang, L. (2016). Model Test Study on Pressure Pulsation of Pump-turbine under turbine braking conditions.
Large Electric Machine Technology, (3), 41-45.
https://doi.org/1000-3983(2016)03-0041-05
Qu, L., & Wang, L. (1996). Study on pressure pulsation of mixed flow reversible pump-turbine across full operating conditions.
Power Engineering, 1996, 16(6), 58-62.
https://doi.org/10.1016/j.est.1996.101396
Skripkin, S. G., Tsoy, M. A., Kuibin, P. A., & Шторк, С (2017). Study of pressure shock caused by a vortex ring separated from a vortex rope in a draft tube model.
Journal of Fluids Engineering-Transactions of The Asme, 139(0811038).
https://doi.org/10.1115/1.4036264
Skripkin, S., Tsoy, M., Shtork, S., & Hanjalić, K (2016). Comparative analysis of twin vortex ropes in laboratory models of two hydro-turbine draft-tubes.
Journal of Hydraulic Research, 54(4), 450-460.
https://doi.org/10.1080/00221686.2016.1168325
Susan-Resiga, R., Dan Ciocan, G., Anton, I., Anton, I., & Avellan, F. (2006). Analysis of the swirling flow downstream a Francis turbine runner.
Journal of Fluids Engineering. https://doi.org/10.1115/1.2137341
Tacob, T., & Liu S. (1998). Discussion on the pulsations of francis turbines and data processing. Foreign Large Electric Machines, 1998(3), 8.
Tamura, Y., Tani, K., & Okamoto, N. (2014).
Experimental and numerical investigation of unsteady behavior of cavitating vortices in draft tube of low specific speed Francis turbine. IOP Conference Series: Earth and Environmental Science. IOP Publishing,
22(3), 032011.
https://doi.org/10.1088/1755-1315/22/3/032011
Tiwari, G., Kumar, J., Prasad,V., Patel, V. (2020). Derivation of cavitation characteristics of a 3MW prototype Francis turbine through numerical hydrodynamic analysis.
Materials Today Proceedings, 26(2), 1439-1448.
https://doi.org/10.1016/j.matpr.2020.02.297"
Yang, J., Zhou, L., & Wang, Z. (2011). Numerical simulation of three-dimensional cavitation around a hydrofoil.
Journal of Fluids Engineering, 133(8).
https://doi.org/10.1115/1.4004385
Zhou, Y., Yu, X., Zhang, J., & Xu, H. (2024). The pressure pulsation characteristics during the load rejection transition process of a pump-turbine with split-flow blades.
Journal of Hydraulic Engineering, 55(09), 1098-1109.
https://doi.org/10.13243/j.cnki.slxb.20230781.
Zuo, Z., Liu, S., Liu, D., & Liu, D., Q, D. (2014). Numerical predictions and stability analysis of cavitating draft tube vortices at high head in a model Francis turbine.
Science China Technological Sciences, 57(11), 2106-2114.
https://doi.org/10.1007/s11431-014-5618-x