Thermal Performance of Two-phase Loop Thermosiyphon under Different Filling Ratios and Heat Transfer Distances

Document Type : Regular Article

Authors

Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

10.47176/jafm.18.12.3642

Abstract

To address the thermal challenges of electronic chips in an energy-efficient manner, this study proposes an optimized two-phase loop thermosiyphon (TPLT) system featuring a mini-channel evaporator, finned condenser, and flexible tubing. This design ensures reliable performance over extended distances while accommodating high heat fluxes and complex cooling scenarios. The effects of filling ratio and heat transfer distance on thermal performance were systematically investigated. Experiments were conducted under controlled ambient conditions of 20℃ and 40% relative humidity. To minimize radial heat losses and ensure measurement accuracy, a layered insulation system was implemented, consisting of alternating wraps of thermal insulation wool and plastic packaging. Results demonstrate that the thermosiyphon's performance is highly dependent on the filling ratio, with thermal resistance initially decreasing before rising as the filling ratio increases. Under high heating power conditions, the system achieved a remarkably low thermal resistance of 0.004 K/W. The maximum heat transfer capacity reached 800 W, underscoring the system's robust performance. Notably, when the heat transfer distance was extended from 3.7 m to 5.7 m, thermal resistance increased only marginally, while the heat transfer limit decreased by a mere 50 W, confirming the system’s exceptional suitability for long-distance heat dissipation. These findings offer significant insights for thermal management in advanced electronic devices, demonstrating the potential of the proposed TPLT design as an efficient and scalable cooling solutions for high-power applications.

Keywords

Main Subjects


Adoni, A. A., Ambirajan, A., Jasvanth, V. S., Kumar, D., & Dutta, P. (2010). Theoretical and experimental studies on an ammonia-based loop heat pipe with a flat evaporator. IEEE Transactions on Components and Packaging Technologies, 33(2), 478-487. https://doi.org/10.1109/TCAPT.2010.2042056
Agostini, F., Gradinger, T., & Cottet, D. (2014). Compact gravity driven and capillary-sized thermosiyphon loop for power electronics cooling. Journal of Thermal Science and Engineering Applications, 6, 031003-1. http://dx.doi.org/10.1115/1.4026184
Armas, G., Rouaze, G., & Marcinichen, J. B. (2021). Experimental evaluation and simulation validation of an air-cooled loop thermosiyphon designed for high heat load CPUs. 2021 20th l EEE lntersociety Conference on Themmal and Thermomechanical Phenomena in Electronic Systems (iTherm), 978-1-7281-8539-2/21/$31.00 2021 IEEE. https://doi.org/10.1109/ITherm51669.2021.9503138
Bai, L. Z., Lin, G. P., Wen, D. S., & Feng, J. T. (2009). Experimental investigation of startup behaviors of a dual compensation chamber loop heat pipe with insufficient fluid inventory. Applied Thermal Engineering, 29, 1447-1456. http://dx.doi.org/10.1016/j.applthermaleng.2008.06.019
Cao, Y. W., Guo, C. S., Yu, Y. S., Ma, J., Wu, D. T., & Zou, Y. (2022). Performances of loop heat pipe with the novel bi-porous quaternary MAX phase Ti3 (Al, Si) C2 capillary wick. Vacuum, 202, 111185. https://doi.org/10.1016/j.vacuum.2022.111185
Cataldo, F., & Crea, Y. C. (2021). Experimental analysis and modeling of a novel thermosiyphon system for electronics cooling. Journal of Electronic Packaging, 143, 041110-1. https://doi.org/10.1115/1.4052670
Chen, S. J., & Yang, J. (2016). Loop thermosiyphon performance study for solar cells cooling. Energy Conversion and Management, 121, 297-304. http://dx.doi.org/10.1016/j.enconman.2016.05.043
Cheng, P. S., & Wong, S. C. (2024). Detailed visualization experiments on the start-up process and stableoperation of double-layered pulsating heat pipes under vertical andhorizontal orientations. International Journal of Heat and Mass Transfer, 231, 125905. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125905
Guo, H., Ji, X. B., & Xu, J. L. (2020). Enhancement of Loop Heat Pipe Heat Transfer Performance with Superhydrophilic Porous Wick. International Journal of Thermal Sciences, 156, 106466. https://doi.org/10.1016/j.ijthermalsci.2020.106466
He, Y. C., Hu, C. Z., Li, H. Y., Hu, X. F., & Tang, D. W. (2022). Visualized-experimental investigation on a mini-diameter loop thermosiyphon with a wide range of filling ratios. International Communications in Heat and Mass Transfer, 133, 105973. https://doi.org/10.1016/j.icheatmasstransfer.2022.105973
Holman, T. D., Baldauff, R. W., & Khrustalev, D. K. (2020). Stabilized loop heat pipe architecture for reliable operation under high-power transients. Journal of Thermophysics and Heat Transfer, 34(3), 1-8. https://doi.org/10.2514/1.T5790
Hu, H. Z., Chen, C. M., Li, C., & Pan, M. Q. (2023). Experimental investigation of roll bond liquid cooling plates for server chip heat dissipation. Applied Thermal Engineering, 226, 120284. https://doi.org/10.1016/j.applthermaleng.2023.120284
Hua, Y., Qu, J., Yang, W. L., Zhang, T., & Zhao, Y. (2024). Thermal characteristics of a two-phase loop thermosiyphon with micro-grooved structures inside the evaporator. International Journal of Heat and Mass Transfer, 224, 125357. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125357
Jengsooksawat, S., Rittidech, S., & Booddachan, K. (2014). Loop thermosiyphon with vapour chamber: a thermodynamic Study. Advances in Mechanical Engineering, 487191. http://dx.doi.org/10.1155/2014/487191
Jiao, A. J., Ma, H. B., & Critser J. K. (2007). Evaporation heat transfer characteristics of a grooved heat pipewith micro-trapezoidal grooves. International Journal of Heat and Mass Transfer, 50, 2905-2911. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.009
Kloczko, S., & Faghri, A. (2020). Experimental investigation on loop thermosiyphon thermal performance with flow visualization. International Journal of Heat and Mass Transfer, 150, 119312. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119312
Li, F. J., Gao, J. M., Shi, X. J., Liang, F., & Tang, R. (2017). Investigation on heat transfer performance of loop thermosiyphonfor inner cooling of motorized spindle. Journal of Xi’an Jiaotong University, 51(7), 8. https://doi.org/10.7652/xjtuxb201707014
Liu, M., Ning, W. J., Yang, J. B., Zhang, Y. K., Han, Z. S., Meng, G., Guo, C. S., Lin, H., & Jia, B. H. (2023). High-performance multi-morphology porous wick fabricated using a composite pore former. International Communications in Heat and Mass Transfer, 148, 107019. https://doi.org/10.1016/j.icheatmasstransfer.2023.107019
Matsubara, K., Tachikawa, S., Kourakata, I., & Matsudaira, Y. (2014). Experiments on thermosiyphon loops for low-temperature waste-heat recovery. Journal of Thermal Science and Engineering Applications, 6, 041006-1. http://dx.doi.org/10.1115/1.4027417
Maydanik, Y. F., & Vershinin, S. V. (2009). Development and tests of ammonia Miniature Loop Heat Pipes with cylindrical evaporators. Applied Thermal Engineering, 29, 2297-2301. https://doi.org/10.1016/j.applthermaleng.2008.11.016
Naik, R., Varadarajan, V., Pundarika, G., & Narasimha, K. R. (2013). Experimental investigation and performance evaluation of a closed loop pulsating heat pipe. Journal of Applied Fluid Mechanics, 6(2), 267-275.
Nakamura, K., Ueno, A., & Nagano, H. (2022). Experimental study on long-distance anti-gravity loop heat pipe with submicron-scale porous structure. Applied Thermal Engineering, 214, 118793. https://doi.org/10.1016/j.applthermaleng.2022.118793
Rukruang, A., Lin, H. Y., Kaew-On, J., & Wang, C. C. (2024). Experimental investigation on thermal performance of multiport minichannel flattened tube thermosiyphon heat exchanger. Applied Thermal Engineering, 257, 124385. https://doi.org/10.1016/j.applthermaleng.2024.124385
Sakthivel, P., Arunkumar, G., Krishnan, P. N., Ramkumar, R., & Parameswaran, P. (2018). Experimental heat transfer analysis on heat pipe using SiO2 and TiO2 nano fluid. Journal of Applied Fluid Mechanics, 11, 91-101. http://dx.doi.org/10.36884/jafm.11.SI.29422
Samba, A., Louahlia-Gualous, H., Masson, S. L., & Nörterhäuser, D. (2013). Two-phase thermosiyphon loop for cooling outdoor telecommunication equipments. Applied Thermal Engineering, 50, 1351-1360. https://doi.org/10.1016/j.applthermaleng.2012.05.023
Sarno, C., Tantolin, C., Hodot, R., Maydanik, Y., & Vershinin, S. (2013). Loop thermosiyphon thermal management of the avionics of an in-flight entertainment system. Applied Thermal Engineering, 51, 764-769. http://dx.doi.org/10.1016/j.applthermaleng.2012.10.012
Srivastava, A., Kumar, P., Ambirajan, A., Dutta, P., Varghese, Z., Rohith, B. L., & Subrahmanya, P. (2024). Experimental investigation of thermosiyphons with horizontal evaporatorfor low heat flux applications. Applied Thermal Engineering, 257, 124249. https://doi.org/10.1016/j.applthermaleng.2024.124249
Vasiliev, L., Zhuravlyov, A., Kuzmich, M., & Kulikouski, V. (2022). Development and testing of a novel horizontal loop thermosiyphon as a kW-class heat transfer device. Applied Thermal Engineering, 200, 117682. https://doi.org/10.1016/j.applthermaleng.2021.117682
Venkataramana, P., Vijayakumar, P., & Balakrishna, B. (2022). Experimental investigation of aluminum oxide nanofluid on closed loop pulsating heat pipe performance. Journal of Applied Fluid Mechanics, 15(6), 1947-1955. https://doi.org/10.47176/jafm.15.06.1324
Xu, J. Y., Wang, D. C., Hu, Z. H., Zhang, L., Ye, L., & Zhou, Y. R. (2020). Effect of the working fluid transportation in the copper composite wick on the evaporation efficiency of a flat loop heat pipe. Applied Thermal Engineering, 178, 115515. https://doi.org/10.1016/j.applthermaleng.2020.115515
Zamanifard, A., & Wang, C. C. (2024). An experimental evaluation of the performance of a remote 2U loop thermosiyphon. Applied Thermal Engineering, 248, 123243. https://doi.org/10.1016/j.applthermaleng.2024.123243
Zhang, H. N., Shao, S. Q., Gao, Y. P., Xu, H. B., & Tian, C. Q. (2020). The effect of heating power distribution on the startup time and overshoot of a loop thermosiyphon with dual evaporators. Applied Thermal Engineering, 11651. https://doi.org/10.1016/j.applthermaleng.2017.12.130
Zhang, P. L., Shi, W.  X., Li, X. T., Wang, B. L., & Zhang, G. H. (2017). A performance evaluation index for two-phase thermosiyphon loop used in HVAC systems. Applied Thermal Engineering, 11577. https://doi.org/10.1016/j.applthermaleng.2017.12.056
Zimmermann, A. J. P., & Melo, C. (2014). Two-phase loop thermosiyphon using carbon dioxide applied to the cold end of a Stirling cooler. Applied Thermal Engineering, 73, 549-558. http://dx.doi.org/10.1016/j.applthermaleng.2014.08.004