Adoni, A. A., Ambirajan, A., Jasvanth, V. S., Kumar, D., & Dutta, P. (2010). Theoretical and experimental studies on an ammonia-based loop heat pipe with a flat evaporator.
IEEE Transactions on Components and Packaging Technologies,
33(2), 478-487.
https://doi.org/10.1109/TCAPT.2010.2042056
Agostini, F., Gradinger, T., & Cottet, D. (2014). Compact gravity driven and capillary-sized thermosiyphon loop for power electronics cooling.
Journal of Thermal Science and Engineering Applications,
6, 031003-1.
http://dx.doi.org/10.1115/1.4026184
Armas, G., Rouaze, G., & Marcinichen, J. B. (2021).
Experimental evaluation and simulation validation of an air-cooled loop thermosiyphon designed for high heat load CPUs. 2021 20th l EEE lntersociety Conference on Themmal and Thermomechanical Phenomena in Electronic Systems (iTherm), 978-1-7281-8539-2/21/$31.00 2021 IEEE.
https://doi.org/10.1109/ITherm51669.2021.9503138
Bai, L. Z., Lin, G. P., Wen, D. S., & Feng, J. T. (2009). Experimental investigation of startup behaviors of a dual compensation chamber loop heat pipe with insufficient fluid inventory.
Applied Thermal Engineering,
29, 1447-1456.
http://dx.doi.org/10.1016/j.applthermaleng.2008.06.019
Cao, Y. W., Guo, C. S., Yu, Y. S., Ma, J., Wu, D. T., & Zou, Y. (2022). Performances of loop heat pipe with the novel bi-porous quaternary MAX phase Ti
3 (Al, Si) C
2 capillary wick.
Vacuum,
202, 111185.
https://doi.org/10.1016/j.vacuum.2022.111185
Cataldo, F., & Crea, Y. C. (2021). Experimental analysis and modeling of a novel thermosiyphon system for electronics cooling.
Journal of Electronic Packaging,
143, 041110-1.
https://doi.org/10.1115/1.4052670
Cheng, P. S., & Wong, S. C. (2024). Detailed visualization experiments on the start-up process and stableoperation of double-layered pulsating heat pipes under vertical andhorizontal orientations.
International Journal of Heat and Mass Transfer,
231, 125905.
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125905
He, Y. C., Hu, C. Z., Li, H. Y., Hu, X. F., & Tang, D. W. (2022). Visualized-experimental investigation on a mini-diameter loop thermosiyphon with a wide range of filling ratios.
International Communications in Heat and Mass Transfer,
133, 105973.
https://doi.org/10.1016/j.icheatmasstransfer.2022.105973
Holman, T. D., Baldauff, R. W., & Khrustalev, D. K. (2020). Stabilized loop heat pipe architecture for reliable operation under high-power transients.
Journal of Thermophysics and Heat Transfer,
34(3), 1-8.
https://doi.org/10.2514/1.T5790
Hua, Y., Qu, J., Yang, W. L., Zhang, T., & Zhao, Y. (2024). Thermal characteristics of a two-phase loop thermosiyphon with micro-grooved structures inside the evaporator.
International Journal of Heat and Mass Transfer,
224, 125357.
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125357
Jengsooksawat, S., Rittidech, S., & Booddachan, K. (2014). Loop thermosiyphon with vapour chamber: a thermodynamic Study.
Advances in Mechanical Engineering,
487191.
http://dx.doi.org/10.1155/2014/487191
Li, F. J., Gao, J. M., Shi, X. J., Liang, F., & Tang, R. (2017). Investigation on heat transfer performance of loop thermosiyphonfor inner cooling of motorized spindle.
Journal of Xi’an Jiaotong University,
51(7), 8.
https://doi.org/10.7652/xjtuxb201707014
Liu, M., Ning, W. J., Yang, J. B., Zhang, Y. K., Han, Z. S., Meng, G., Guo, C. S., Lin, H., & Jia, B. H. (2023). High-performance multi-morphology porous wick fabricated using a composite pore former.
International Communications in Heat and Mass Transfer,
148, 107019.
https://doi.org/10.1016/j.icheatmasstransfer.2023.107019
Matsubara, K., Tachikawa, S., Kourakata, I., & Matsudaira, Y. (2014). Experiments on thermosiyphon loops for low-temperature waste-heat recovery.
Journal of Thermal Science and Engineering Applications,
6, 041006-1.
http://dx.doi.org/10.1115/1.4027417
Naik, R., Varadarajan, V., Pundarika, G., & Narasimha, K. R. (2013). Experimental investigation and performance evaluation of a closed loop pulsating heat pipe. Journal of Applied Fluid Mechanics, 6(2), 267-275.
Rukruang, A., Lin, H. Y., Kaew-On, J., & Wang, C. C. (2024). Experimental investigation on thermal performance of multiport minichannel flattened tube thermosiyphon heat exchanger.
Applied Thermal Engineering,
257, 124385.
https://doi.org/10.1016/j.applthermaleng.2024.124385
Sakthivel, P., Arunkumar, G., Krishnan, P. N., Ramkumar, R., & Parameswaran, P. (2018). Experimental heat transfer analysis on heat pipe using SiO
2 and TiO
2 nano fluid.
Journal of Applied Fluid Mechanics,
11, 91-101.
http://dx.doi.org/10.36884/jafm.11.SI.29422
Sarno, C., Tantolin, C., Hodot, R., Maydanik, Y., & Vershinin, S. (2013). Loop thermosiyphon thermal management of the avionics of an in-flight entertainment system.
Applied Thermal Engineering,
51, 764-769.
http://dx.doi.org/10.1016/j.applthermaleng.2012.10.012
Srivastava, A., Kumar, P., Ambirajan, A., Dutta, P., Varghese, Z., Rohith, B. L., & Subrahmanya, P. (2024). Experimental investigation of thermosiyphons with horizontal evaporatorfor low heat flux applications.
Applied Thermal Engineering,
257, 124249.
https://doi.org/10.1016/j.applthermaleng.2024.124249
Vasiliev, L., Zhuravlyov, A., Kuzmich, M., & Kulikouski, V. (2022). Development and testing of a novel horizontal loop thermosiyphon as a kW-class heat transfer device.
Applied Thermal Engineering,
200, 117682.
https://doi.org/10.1016/j.applthermaleng.2021.117682
Venkataramana, P., Vijayakumar, P., & Balakrishna, B. (2022). Experimental investigation of aluminum oxide nanofluid on closed loop pulsating heat pipe performance.
Journal of Applied Fluid Mechanics,
15(6), 1947-1955.
https://doi.org/10.47176/jafm.15.06.1324
Xu, J. Y., Wang, D. C., Hu, Z. H., Zhang, L., Ye, L., & Zhou, Y. R. (2020). Effect of the working fluid transportation in the copper composite wick on the evaporation efficiency of a flat loop heat pipe.
Applied Thermal Engineering,
178, 115515.
https://doi.org/10.1016/j.applthermaleng.2020.115515
Zhang, H. N., Shao, S. Q., Gao, Y. P., Xu, H. B., & Tian, C. Q. (2020). The effect of heating power distribution on the startup time and overshoot of a loop thermosiyphon with dual evaporators.
Applied Thermal Engineering,
11651.
https://doi.org/10.1016/j.applthermaleng.2017.12.130
Zhang, P. L., Shi, W. X., Li, X. T., Wang, B. L., & Zhang, G. H. (2017). A performance evaluation index for two-phase thermosiyphon loop used in HVAC systems.
Applied Thermal Engineering,
11577.
https://doi.org/10.1016/j.applthermaleng.2017.12.056