Study on the Cavitation Performances and Unsteady Characteristics of a Centrifugal Fire Pump

Document Type : Regular Article

Authors

1 National Research Center of Pump, Jiangsu University, Zhenjiang 212013, Jiangsu, China

2 School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China

3 Shanghai Kaiquan Pump (Group) Co. Ltd., Jiading 4255/4287, Shanghai, China

4 Zhenjiang Fire and Rescue Division, Zhenjiang 212000, Jiangsu, China

10.47176/jafm.18.12.3577

Abstract

Centrifugal fire pumps are critical for firefighting systems but suffer from cavitation and instability under off-design conditions. However, systematic analyses of their flow-rate-dependent dynamics remain limited. This study systematically investigates the hydraulic performance, cavitation characteristics, and dynamic pressure pulsations of a centrifugal fire pump under various flow conditions (50%–150% of the design flow rate) through combined numerical simulations and experiments. Steady simulations were conducted using the standard κ-ε turbulence model, while unsteady simulations were performed with a 2° angular time step to capture the transient interactions between the impeller and the volute as well as the resulting dynamic pressure pulsations. Key results revealed that: At low flow (60% Qd), Radial force amplitudes increased by 40%, accompanied by 9.86 Hz low-frequency pulsations attributed to backflow-induced instabilities; At high flow (150% Qd), The critical cavitation number σ₃% surged to 0.961, indicating a 2.6-fold cavitation risk compared to the design condition (σ₃% = 0.376); The findings provide actionable strategies for optimizing pump design and operational stability in firefighting systems.

Keywords

Main Subjects


Elyamin, G. R. A., Bassily, M. A., Khalil, K. Y., & Gomaa, M. S. (2019). Effect of impeller blades number on the performance of a centrifugal pump. Alexandria Engineering Journal, 58(1), 39-48. https://doi.org/10.1016/j.aej.2019.02.004
ANSYS Inc. (2012). Theory Reference. ANSYS Inc.
Bakir, F., Rey, R., Gerber, A. G., Belamri, T., & Hutchinson, B. (2004). Numerical and experimental investigations of the cavitating behavior of an inducer. International Journal of Rotating Machinery, 10(1), 15-25. https://doi.org/10.1155/s1023621x04000028
Bozorgasareh, H., Khalesi, J., Jafari, M., & Gazori, H. O. (2021). Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: numerical and experimental investigations. Renewable Energy, 163(Pta1), 635-648. https://doi.org/10.1016/j.renene.2020.08.104
Brennen, C. E. (2012). A review of the dynamics of cavitating pumps. IOP Conference Series Earth and Environmental Science, 15(1), 2001. https://doi.org/10.1088/1755-1315/15/1/012001
Dai, C., Ge, Z., Dong, L., & Zhu, J. (2022). Study on noise characteristics of marine centrifugal pump under different cavitation stages. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 1-15. https://doi.org/10.1007/s40997-020-00390-5
Fu, Y., Fang, Y., Yuan, J., Yuan, S., Pace, G., & Dagostino, L. (2016). Study on Hydraulic Performances of a 3‐Bladed Inducer Based on Different Numerical and Experimental Methods. International Journal of Rotating Machinery, 2016(1), 4267429. https://doi.org/10.1155/2016/4267429
Fu, Y., Fan, M., Pace, G., Valentini, D., Pasini, A., & d’Agostino, L. (2018, July). Experimental and numerical study on hydraulic performances of a turbopump with and without an inducer. Fluids Engineering Division Summer Meeting (Vol. 51579, p. V003T12A032). American Society of Mechanical Engineers. https://doi.org/10.1115/FEDSM2018-83506
Huan, Y. Y., Liu, Y. Y., Li, X. J., Zhu, Z. C., Qu, J. T., Zhe, L., & Han, A. D. (2021). Experimental and numerical investigations of cavitation evolution in a high-speed centrifugal pump with inducer. Journal of Hydrodynamics, 33(1), 140-149. https://doi.org/10.1007/s42241-021-0006-z
International Organization for Standardization (1999). *ISO 9906:1999 - Rotodynamic pumps — Hydraulic performance acceptance tests — Grades 1 and 2*. https://doi.org/10.3403/30202352
Jia, X., Yang, X., & Zhu, Z. (2024). Study on pressure pulsations and transient fluid forces in centrifugal pump under different degrees of cavitation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(6), 2834-2844. https://doi.org/=10.1177/09544089231164832
Long, Y., An, C., Zhu, R., & Chen, J. (2021). Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions. Physics of Fluids, 33(4). https://doi.org/10.1063/5.0040618
Lu, J., Chen, Q., Liu, X., Zhu, B., & Yuan, S. (2022). Investigation on pressure fluctuations induced by flow instabilities in a centrifugal pump. Ocean Engineering, 258, 111805. https://doi.org/10.1016/j.oceaneng.2022.111805
Lu, J., Liu, J., Qian, L., Liu, X., Yuan, S., Zhu, B., & Dai, Y. (2023). Investigation of pressure pulsation induced by quasi-steady cavitation in a centrifugal pump. Physics of Fluids, 35 (2), 025119.https://doi.org/10.1063/5.0135095
Nolan, D. P. (2011). Fire fighting pumping systems at industrial facilities. Fire Fighting Pumping Systems at Industrial Facilities, 215–220. https://doi.org/10.1016/B978-081551428-2.50025-X
Oro, J. M. F., Perotti, R. B., Vega, M. G., & Gonzalez, J. (2023). Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions. Energy, 278, 127820. https://doi.org/10.47176/jafm.15.06.1303
Osman, F. K., Zhang, J., Lai, L., & Kwarteng, A. A. (2022). Effects of turbulence models on flow characteristics of a vertical fire pump. Journal of Applied Fluid Mechanics, 15(6), 1661-1674. https://doi.org/10.47176/jafm.15.06.1303
Palgrave, R. (2003). Troubleshooting Centrifugal Pumps And Their Systems.  1-I. https://doi.org/10.1016/B978-185617391-9/50018-6
Ramirez, R., Avila, E., Lopez, L., Bula, A., & Forero, J. D. (2020). CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps. Alexandria Engineering Journal, 59(1), 291-309.  https://doi.org/10.1016/j.aej.2019.12.041
Ruggeri, R. S., & Moore, R. D. (1969). Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds. National Aeronautics and Space Administration.
Skrzypacz, J., J., & Bieganowski, M. (2018). The influence of micro grooves on the parameters of the centrifugal pump impeller. International Journal of Mechanical Sciences, 144, 827-835. https://doi.org/10.1016/j.ijmecsci.2017.01.039
Sonawat, A., Kim, S., Ma, S. B., Kim, S. J., Lee, J. B., Yu, M. S., & Kim, J. H. (2022). Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump. Energy, 252, 124020. https://doi.org/10.1016/j.energy.2022.124020
Song, Y., Zhang, T., Liu, Q., Ge, B., Liu, J., & Zhang, L. (2024). Cavitation identification method of centrifugal pumps based on signal demodulation and EfficientNet. Arabian Journal for Science and Engineering, 1-15. https://doi.org/10.1007/s13369-024-09193-1
International Association of Fire and Rescue Services (CTIF). (2014). World fire statistics: Information bulletin of the World (Report No. 19).
Xianwei, L. I. U., Jiangfeng, F. U., Junjie, Y. A. N. G., Dewen, Y. I. N., Zhenhua, Z. H. O. U., & Huacong, L. I. (2024). Numerical simulation research on multiphase flow of aviation centrifugal pump based on OpenFOAM. Chinese Journal of Aeronautics, 37(4), 256-275. https://doi.org/10.1016/j.cja.2023.11.016
Yousefi, H., Noorollahi, Y., Tahani, M., Fahimi, R., & Saremian, S. (2019). Numerical simulation for obtaining optimal impeller's blade parameters of a centrifugal pump for high-viscosity fluid pumping. Sustainable Energy Technologies and Assessments, 34(AUG.), 16-26. https://doi.org/10.1016/j.seta.2019.04.011
Zhu, Y., Zhou, L., Lv, S., Shi, W., Ni, H., Li, X., ... & Hou, Z. (2023). Research progress on identification and suppression methods for monitoring the cavitation state of centrifugal pumps. Water, 16(1), 52. https://doi.org/10.3390/w16010052.